Balala Station

Download print-friendly version

Richard Daugherty and Sarah Burrows set out to find a property that provided the lifestyle and outdoor experiences they so desired. With a young family they chose to move from South Africa and settle in the New England district of northern NSW. Having done their research they settled on Balala Station which just happened to be up for sale for only the second time since establishment.

Whilst drought has been a setback, this determined couple are forging ahead setting the property up for a time when rains return. New business ventures and further plans keep these two firmly planted on the ground.


Balala Station, Balala NSW

ENTERPRISE: Merino sheep and Angus cattle breeding



ELEVATION: 860 – 1000 m


  • Richard’s background in South Africa observing wild animals on their annual migration and learning about holistic grazing practices that mimic these natural processes influenced the choice to implement regenerative agriculture and matched Sarah’s commitment to healthy, ethical food production systems.


Regenerative landscape and livestock management regimes, including:

  • Increase paddock numbers to facilitate rotational grazing
  • Water infrastructure including dams and water reticulation points
  • Soil testing to identify key nutrient deficiencies
  • Restoration of biodiversity through tree thinning
  • Conservation work with the Bells turtle and Regent honeyeater Projects
  • Fence out riparian zones


  • Complimentary sheep and cattle grazing on a rotational plan.
  • Natural capital enhancement leading to improved biodiversity and drought resilience.
  • Connections through the University of New England on sustainability and land management issues.
Balala Station – Picturesque rural setting where colonial history blends with modern agriculture
Angus cattle wandering among vegetation on the flats
Fallen trees strategically placed to catch organic matter and slow water sheeting across the ground


From a regenerative perspective Balala Station may have been a blank canvas which makes the work undertaken and the transition story more intriguing. With minimal farming experience and a desire  to learn from others, relationships with the broader community have blossomed and so too has the family.


From the formative years of Australian agriculture, this once vast station stocked 44,000 sheep. There we no dams and few paddocks. Over a century of set stocking had exacted a toll on the landscape. The turn around and potential thereafter looks promising.


Education, training, goal setting, trading strategies, infrastructure, cashflow, productivity and on and on it goes…

A farmers lot is never easy, taking the time to plan your approach and not go in boots ‘n all is an effective strategy.


Intent on farming, the political landscape in South Africa was judged too risky, alternatively Australia looked promising. Richard and Sarah settled on a property in the New England area, it had “good bones” but there was work to be done…


Download print-friendly version

A fish kill in 1987/88, caused by leaching from acid sulphate soils, and a divided community set the scene for Robert Quirk’s journey as a cane farmer turned “accidental, but willing, scientist”.

He’s since developed, and implemented, a set of regenerative practices that are recognised as best management for cane farming. Robert uses a holistic approach, combining engineering and agronomic solutions, to drainage, soil health and nutrient management.


The Quirk Farm, Stotts Creek NSW

ENTERPRISE: Sugarcane (100 ha), Cattle grazing (17 ha)

PROPERTY SIZE: 117 hectares




  • Prevent release of sulphuric acid from farm into the Tweed River and reduce waterlogged soil impact on sugar cane productivity.


  • Laser levelling and automatic pumping system to stop flooding
  • Leaving cane trash to decompose after harvest
  • Applied urea to cane trash to assist in decomposition
  • Applied lime
  • Introduced mounding/raised beds to grow sugar cane
  • Utilised a ‘bed renovator’ machine to prepare for planting
  • Introduced winter cover crops into the crop rotation


  • Significant reduction in input costs.
  • Increased soil organic carbon levels from 1% up to 8.8%.
  • Improved pH from 1.8 to 5.6.
  • Increased number of harvests (ratoons) from 4 -6 years.
  • Understand causes and mitigate sulphuric acid from releasing into waterways impacting aquatic life.


Robert Quirk implemented innovations such as laser levelling his cane fields and mounding the cane rows to ensure that water drained correctly off his property and didn’t mobilise the acid sulphates in the soil.

During this time Robert Quirk became aware of the danger of climate change, this caused Robert Quirk to alter his management practices in an attempt to build carbon in his soil and reduce inputs. Robert Quirk reduced the amount of fertilisers, insecticides and pesticides used on the property as well as leaving the cane trash to lie on the field post-harvest. Robert Quirk also introduced other innovations such as an automatic pumping system to remove flood water from the cane fields and a bed renovator machine to prepare the cane fields.

Robert Quirk found that through his innovations soil organic carbon levels increased from 1% in the 1960’s to currently 8.8% on different points of the property. The pH of the property also increased from 1.8 in the 1980’s to currently stand at 5.6. Robert Quirk’s innovations have greatly improved the health of his soil whilst managing to control the threat of the acid sulphates underneath his cane fields.


The practices Robert Quirk has implemented on his property have led the way for sugar cane farming around the world.


In 1987 Robert Quirk set out on a path to improve the ecological health of his property and the nearby waterways.


Robert Quirk has significantly reduced the cost of his inputs whilst maintaining good production levels.


Robert Quirk has gained immense satisfaction through reinventing himself and his management strategies.


Download print-friendly version

Maddy Coleman grew up in the city, and her love of horses introduced her to agriculture. Years of experience working in diverse farming practice and ongoing training and education followed. Maddy has made changes to their initial Rothesay business model, proving that flexibility, formal and applied education and conversations with mentors are key factors in managing ongoing drought conditions.

Management changes on Rothesay include preserving ground cover using a different stocking model and fencing to allow rehabilitation of creeks and gullies. Maddy shares her experience in managing Rothesay using regenerative farming practices in this transition case study.


Rothesay, Blackville NSW

ENTERPRISE: Cattle trading

PROPERTY SIZE: 1,620 hectares




  • Drought


  • Regenerative agriculture
  • Maintaining a high level of ground cover
  • Optimising soil hydrology
  • Feed budgeting
  • Conservative stocking rates
  • Rotational grazing


  • Delivering cash flow in drought


Maddy and Malcolm Coleman (her father) purchased Rothesay in 2016. They added the adjoining Springfield block two years later and now the combined Rothesay property comprises 1,629 hectares. While Malcolm visits to help occasionally, Maddy makes all the day-to-day decisions about managing the farm.

Rothesay is located on the foothills and lower slopes of the Liverpool Ranges, in the catchment of the Mooki River. Omaleah Creek and Black Creek run through and join on the property. The creeks only flow intermittently, so water for stock is obtained from bores. The long-term average annual rainfall as recorded at Blackville (2 km south of the farm) is 691 mm, with summer dominant rainfall pattern.

Deep cracking clay soils found on Rothesay

Paddock sub-division

Subdividing paddocks cost-effectively; one new trough can water up to four or more paddocks depending how paddocks are set up. Electric tapes are used to separate paddocks as required. Turning off water to the trough when the cattle have been moved on removes the attraction for kangaroos, and therefore helps reduce grazing pressure.

Carefully planned grazing enables paddocks adjoining creek lines to be rested long enough for tree regeneration to become established. The build-up of vegetation then retards storm flows, prevents erosion and leads to increased infiltration of run-off into the water table.

Shallow level channels carry water from the gully and allow it to disperse across the paddocks where it can infiltrate, rehydrating the soil.

Ground cover on Rothesay after two drought years. Maintaining ground cover during a drought ensures that topsoil is protected and rain that falls is able to penetrate, meaning pastures will grow back rapidly.


While it is early in the story, indications are that Maddy Coleman is showing the way to considerably improve the resilience of her farm business.


Looking back, Maddy recognises that she made mistakes, but also knows they were learning experiences.



Bryan Ward’s property, Illawong, comprises 160 hectares and carries up to 140 beef cattle at any one time. While this is a relatively small property, it is perhaps typical of thousands of farms producing beef in Australia. There’s a trend to smaller holdings, many operated by people with little farming background.

But Bryan’s achievements over 24 years of managing Illawong provide valuable lessons for producers seeking to maintain production while also regenerating and improving the condition of the land. Watch a 1-minute summary of Bryan’s key practices and achievements here.


Bowna, NSW

ENTERPRISE: Grass-fed cattle finishing

PROPERTY SIZE: 160 hectares




  • Turning two paddocks of neglected hill country into a profitable, pasture rich operation


  • Contour ripping; direct drilling of eucalypts, acacias and understory species in fenced off remnant vegetation patches
  • Rehydrating the landscape
  • Removal of rabbits
  • Establishment of perennial pasture


  • Illawong cattle now consistently achieve amongst the highest level of compliance, earning Bryan an award from Meat and Livestock Australia for being one of the Top 100 producers in New South Wales.


Bryan found two paddocks of neglected hill country, a small part of a large sheep grazing property called Table Top Station located at Bowna, about 10 km north of Lake Hume and 20 km north-east of Albury. In late 1994, these run-down paddocks, comprising undulating slopes with clay loam soils rising to rocky granitic soils on steep slopes, became Illawong.

After decades of set stocking on annual pastures, Patterson’s curse, rabbits and gully erosion were prevalent on Illawong and the remaining woody vegetation comprised remnant red box, yellow box, red stringybark, Blakely’s red gum and long-leaf box trees. Average annual rainfall in the area is a respectable 650 mm, but that is little use if it falls on bare impenetrable soil and most of it rushes down the gullies, taking topsoil with it.

Carrying capacity was a low 1.5 DSE. This was the condition of the property when Bryan acquired it. 1996 was around the beginning of the ‘millennium drought’, which saw 10 years of severely below average rainfall across southern Australia.

When the drought set in, Bryan feared that massive soil erosion would ensue when the rain returned. He was keen to contour-rip so that when rain eventually came it would penetrate, rather than run off, be wasted and exacerbate the gully erosion. That work was assisted by a drought relief program subsidy available at the time from the Commonwealth Government through the Natural Heritage Trust. Today the contour ripping is indistinguishable, but the dams constantly have water because the rain that falls infiltrates and seeps in to the dams from the water table.

Over a ten-year period, the fencing was re-designed using electric fences so that rotational grazing could be introduced, rotating the stock around seven paddocks, leaving the pasture height at least 100 mm (1500 kg dry matter per hectare). Cattle spend 5 to 7 days in each paddock at a time, fewer in the unimproved pasture paddocks, at a stocking rate of 36 DSE/ha. This ensures that the cattle receive sufficient nutrition and provides time for pastures to recover.

Bryan buys Angus trade steers, selecting from producers whose stock he has found suitable for finishing on pasture. Three different genetic lines typically make up the annual herd. These arrive in spring at an average live weight of around 370 to 400 kg and leave by the following winter at around 630 kg live weight. The number of steers bought each year depends on seasonal conditions, ensuring that the pasture available at the time can sustain the grazing pressure.

Over 24 years of changing from sheep to cattle, introducing rotational grazing, establishing perennial pastures and improving stock shelter, productivity has increased from 1.5 DSE to 12–14 DSE. Cattle growth rates of over 2 kg live weight per day have been recorded in winter. Most importantly, the business can adjust to seasonal conditions so that pastures do not suffer from over-grazing in dry periods and there is no loss of soil capital.


The practices adopted by Bryan at Illawong are not ground breaking or revolutionary. It is simply common sense land management based on self-evident principles.


In 1995, Bryan developed a farm plan for Illawong by matching the establishment and development of pasture types to land capability classes.


Bryan has achieved the same level of productivity and efficiency on Illawong as other farming enterprises, with significantly larger footprints.


Bryan has transformed Illawong with great satisfaction and, the result he says is, “the pinnacle of total improvement of landscape, and restoration to its original state”. 



This is the story about a creek

Mulloon Creek is not just any creek. It runs for around 50 kilometres through a beautiful valley in the Southern Tablelands, near Bungendore, New South Wales. It drains an area of around 400 square kilometres in a north- south aligned sub-catchment of the Upper Shoalhaven River.

There’s history there, too. Mulloon Creek followed an original Cobb and Co highway between Goulburn and Cooma.


Mulloon Creek Catchment, NSW

ENTERPRISE: Grazing, cropping

CATCHMENT SIZE: 23,000 hectares


ELEVATION: 692-1260 m


  • Rehydrating the Mulloon Creek Catchment


  • Construction of “leaky weirs” to slow down and re-distribute water


  • Higher productivity and hydration proved at the Home Farm pilot, with monitoring and benchmarking along the Catchment


This Soils For Life case study, undertaken in collaboration with The Mulloon Institute, examines a unique, long term and broad project.

With the guidance and co-ordination undertaken by the Institute, 20 landholders are working collaboratively to rehydrate the Creek and their agricultural landscapes. It’s presented an opportunity for those land managers to develop a baseline assessment of vegetation condition on different land types.

The Institute was founded by a remarkable man, Tony Coote AM, who bought several farms along Mulloon Creek and began applying regenerative practices, some of them designed by Peter Andrews.

Tony Coote. Photo: Canberra Region Joint Organisation/Adam Mcgrath

Tony was well-known in the farming community for his work in agriculture, as well as founding Mulloon Creek Natural Farms and The Mulloon Institute. He started a small water project before founding the Institute in 2011, expanding into what is now a 23,000-hectare site with 50 kilometres of creek. The goal has been to reverse the damage done to the landscape and the water by numerous erosion gullies – still far too common sights on farms across the country.

The work he was renowned for was “banking” water, by restoring creeks to pre-European states and slowing flow, allowing farmers to store water in the landscape itself and draw it when needed. By using this technique, which started in a 2006 project, Mr Coote was able to boost agricultural productivity. His institute’s research has been recognised by the United Nations.

The Chair of The Mulloon Institute is Gary Nairn AO.

Farmers are naturally independent souls in their thinking and actions. But a pilot carried out by The Mulloon Institute 13 years ago served to prove the viability – and profitability – of slowing down the Creek. The instream interventions, i.e. leaky weirs, were installed along Mulloon Creek at the Home Farm then, but most of the substantive instream interventions along the Creek commenced after 2016.

The results of this unique project will be monitored and benchmarked by The Institute. Landholders are reporting a better flow of water, and higher quality water. The Institute will collect data over time on the impact of the slower water flows on their pastures.

A comprehensive assessment of the vegetation condition of the Mulloon Creek Catchment and the Mulloon Community Landscape Rehydration Project is available for download here.

The job of coordinating up to 20 landholders and work on14 farms has fallen to Peter Hazell, Project Coordinator at The Mulloon Institute.

Upstream from the “plug” at Peter’s Pond, Sue and Ulli Tuisk need the creek for their household and their Angus cattle. During the Millenium Drought and the fierce drought of 2018, the creek almost dried up.

The Tuisks, who own historic “Palerang” decided to install a slightly different type of weir – in the form of a “V”. As an engineer, Ulli understands the mechanics…

A very recently completed ecological assessment provides early indications of some positive results at Palerang.  Richard Thackway, of VAST Transformations, Canberra, prepared the report, Assessment of vegetation condition – Mulloon Catchment and Mulloon Community Landscape Rehydration Project, for The Mulloon Institute in January 2019.

One of the first landowners to come on board with Tony Coote’s vision was Gerry Carroll, of “Mulloon Farm”.

He and his Manager, Andrew Robinson, have seen outstanding results from slowing down the Creek, and building up surrounding pasture.

Next door, John West at “West View” has seen a remarkable transformation on his part of the Creek, in a very short time.

In 12 weeks, and with five interventions, John’s seeing fish and birds for the first time in decades, as well as clean water good enough for a dip.


Peter’s Pond, Mullon Creek Home Farm
Monitoring station, Peter’s Pond
“Palerang”, below V-shaped weir
The leaky weir at Mulloon Farm
John West at one of the leaky weirs at “West View”
Mulloon Creek at “West View”


Download print-friendly version


This is the story of an historic farm which almost failed. It’s a story which goes back 200 years, when the pasture at Brownlow Hill, just near Camden, supplied Sydney with milk.

A number of crises, including the deregulation of the dairy industry in the 1990’s and the threat of Coal Seam Gas exploration, forced Edgar and Lynne Downes to drastically review how they farmed.

This case study tracks the ecological, production and social changes on the property over the entire period.


Camden, NSW

ENTERPRISE: Dairying, beef cattle, lucerne cropping, Bio Banking

PROPERTY SIZE: 1,215 hectares




  • Deregulation of the dairy industry; possibility of Coal Seam Gas extraction; urban encroachment


  • Natural Sequence Farming; organic fertlisers for pastures including poultry manure, horse manure, sawdust, straw and urine on lucerne paddocks; pilot farm for Bio Banking; organic practices


  • Increased sustainable revenue from lucerne, beef, dairy, Bio Banking, and entertainment venue, and reduced costs due to cessation of all chemical use and regenerative practices


Brownlow Hill is one of Australia’s most significant early agricultural and settlement sites, providing opportunities for research into change and development over more than 200 years. It was the first dairy farm to serve the fledgling settlement of Sydney. Current ownership and occupation stems back almost 160 years. The whole property has been heritage listed and will never be developed for housing.

An early view of the cow pastures (Engraving by Arthur Willmore, National Library of Australia)

Soils For Life visited Brownlow Hill Estate several times during 2018, just as the widespread drought which affected New South Wales and Queensland tightened its grip. However, the river flats and alluvial woodland on the lower sections of the farm were proving resilient, as a result of the intensive integration of stable waste and organic fertlisers applied over 12 years.

From 1985 onwards, Edgar started to use poultry manure instead of synthetic fertilisers and also installed sub-surface drip irrigation. He reduced the cropping intensity and turned more land over to lucerne, both for the dairy herd and for sale as hay.

The deregulation of the milk market was a turning point. Edgar’s land also became subject to a Coal Seam Gas Exploration Licence, and the city of Sydney was encroaching.

Edgar adopted Natural Sequence Farming methods and started spreading a mixture of horse manure, sawdust, straw and urine on his paddocks. This was provided by a recycling business for free.

In a major development, the New South Wales Office of Environment and Heritage introduced BioBanking and Brownlow Hill became the pilot for this program. The rarity of remnant Cumberland Plain Woodland and the need for developers and the Government to offset destruction of this threatened ecological community has meant that Edgar’s least productive agricultural land has become his most valuable asset.

Edgar’s changed management practices have meant that he no longer uses chemicals. He rotates his crops and renovates his pastures as needed and his cattle don’t require drenching or inoculations. His heifers and cows are naturally mated and his crops are resistant to mites, aphids and other pests. There is no salinity evident in either the river water or the soil, and his cows don’t bloat, even when consuming wet lucerne, clover or summer forage. With these regenerative practices, Edgar is able to sustainably farm Brownlow Hill and continue his family tradition.


Brownlow Hill is one of Australia’s most significant early agricultural and settlement sites, providing opportunities for research into change and development over more than 200 years.

Watercolour by Conrad Martens, 1836 National Library of Australia


This ecological assessment commences in 1973 when Edgar Downes returned to Brownlow Hill to run the property. Two examples of regenerative landscape management are found, corresponding to two very different land types; river flats and shale hills.


Dairy has been the mainstay of Brownlow Hill for over 100 years. There have been five dairies on the farm, and three still operate today.


Brownlow Hill’s production systems are based on two main land types found on the property – river flats characterised by deep alluvial soils and shale hills on the upper and lower slopes.


The current owners of Brownlow Hill, Edgar and Lynne Downes, are the fifth generation to call Brownlow Hill home. Their sense of responsibility and attachment to this property is strong. 


Download print-friendly version

This is the story of Jillamatong, a grazing property in the New South Wales Southern Tablelands with a history going back to 1951. In 1985, Martin Royds – the third-generation family member to manage Jillamatong – took over the running of the property. And he was forced to make big changes.


Southern Tablelands (near Braidwood NSW)

ENTERPRISE: Prime lamb, cattle, garlic, truffles, yabbies

PROPERTY SIZE: 457 hectares


ELEVATION: 650-750 m


  • Reducing input costs and increasing productivity (230% over 9 years)


  • Holistic management techniques
  • restored eroded areas
  • vastly improved water quality through development of chain of ponds
  • improved soil nutrients and soil carbon
  • sustained high levels of reproductive potential of pastures
  • the maintenance of consistently high levels of ground cover in summer and in winter.


  • significant reduction in costs
  • 230% profit between 2005 and 2014
  • satisfaction across all levels


A snapshot of Jillamatong’s history is relevant to the condition in which Martin inherited his land. From 1951 until 1985, when Martin began to take a more active role in the management of the Royds holdings, the property was stocked and rather degraded.

His grandfather had subdivided it into 12 paddocks and arranged for some applications of superphosphate to encourage the growth of seeded rye grass. There was no cropping – Jillamatong was only running sheep and cattle.


Martin Royds has instituted whole of farm changes, and these reports detail the striking results.

They include minimising the effects of climate – not just climate change, but droughts and wildfire. Martin’s regenerative practices also prevent erosion; restored eroded areas; maintained ecological health; the productive capacity of the farm and vastly improved water quality.

Ecological changes also include: soil nutrients and soil carbon; sustained high levels of reproductive potential of pastures and the maintenance of consistently high levels of ground cover in summer and in winter.


This report presents the outputs of a 10-year financial analysis of Jillamatong. It contains selected financial indicators, which are compared to industry benchmarks incorporating 146 farms across South Eastern Australia. The benchmarking provides long term averages across a range of financial and production criteria.

Among other outstanding results, it shows a significant reduction in costs, including supplementary feed costs for cattle at less than 10% of the average, and over 26% less than the highest cost of supplementary feeding. Estimated costs and profit per DSE also show a remarkable 230% profit between 2005 and 2014.

This report examines the EBITs (Earnings before interest and Tax) of Jillamatong over the 10 years between 2005 and 2014, and shows consistent profits, from just under $300,000 to an average of just over $120,000.


This report uses a number of productivity indicators and reveals that Martin Royd’s regenerative agriculture processes have reduced his costs incrementally. From a high of $1.90 per DSE in 2004/05, the indicators show that animal health expenses and pasture costs have gradually reduced, with allowance for dry years. Supplementary feed costs across the whole 10-year period are zero per DSE.

The indicators graphically explain some of the lower cost structures in the business. The grazing approach taken by Jillamatong has led to low pasture costs and the capacity to budget feed ahead, and adjust animal numbers accordingly.


There’s more to farming than profit and loss statements. This report presents the management team’s averaged response to questions completed on the social aspects of the business, using the On-Track Farm Family Business Indicators and questions from the Regional Wellbeing Survey.

In other words, it tells us how the people on the farm feel about their business, and how satisfied they are with the way they’re running their operations.

The results show satisfaction across all levels, with the highest scores related to the ability to try new things on the farm, the ability to be flexible, have clear expectations and social acceptance.





Graham and Cathy Finlayson have used stock to convert claypans to pastures, significantly improving their carrying capacity, while diversifying into cattle trading and tourism to drought-proof their property, Bokhara Plains.



Download print-friendly version


35 km north of Brewarrina, NSW North West

ENTERPRISE:  Cattle, tourism. Beef cattle agistment and trading; accommodation and event venue

PROPERTY SIZE: 7200 hectares




  • Identifying the potential to improve the landscape and production


  • Using stock to break up claypan
  • Holistic Management techniques to regenerate the rangeland
  • Stock trading to balance stocking rate with pasture availability
  • Diversifying into tourism
  • Innovations commenced: 2001


  • Carrying capacity almost doubled to over 100 DSE days per hectare per 100mm rainfall
  • Revegetation of claypan landscape
  • Strong, positive community relationships


Disturbed surface and early claypan regeneration.

When Graham and Cathy acquired Bokhara Plains in 1999 they accepted that the property was run down. Ground tanks were bogging sheep every summer, they needed to cut scrub for fodder to keep sheep alive and large areas of the property were claypans. But they felt that things should be better than they were.

Graham and Cathy turned this belief into action after identifying potential in the claypans from observing new plant growth where the surface had been disturbed. Stock were eventually used to break up the claypans, allowing water to penetrate and seeds to germinate. Combined with Holistic Management techniques, the claypans are now being reverted to productive, pastured rangelands with an increasing carrying capacity. Further diversifying into cattle trading and tourism to ensure that they remain viable regardless of the rainfall, Graham and Cathy are well on the way to reaching the real potential of the NSW rangelands, and are providing a shining light for others to follow.



Bokhara Plains is located on the Goodooga road some 35km north of Brewarrina, NSW. The property has frontage on the Bokhara and Birrie Rivers, tributaries of the Barwon River and is part of the Murray Darling Basin and the Western Catchment Management Authority.

The property was traditionally farmed for wool production based on the sparse seasonal pasture growing on the flood plains of the two rivers.

When Cathy and Graham took over the property in 1999, about 50% of the area was claypan or otherwise bare ground. The claypans added nothing to the feed potential of the property. Even in good seasons, the land had struggled to maintain one of the lowest stocking rates in the district.

Graham realised that merinos were not profitable in this environment, and set stocking without matching numbers to carrying capacity was exacerbating ecological problems in the landscape. He explains, “We were almost totally reliant on my wife and I both working off farm to make ends meet. Continually running into dry periods and wishing / praying for rain was having a terrible emotional effect on my mental attitude, and a feeling of helplessness seemed to prevail”.

“I had read Allan Savory’s book on Holistic Management and realised that we could change the way we did things. One of two things drives fundamental change – pleasure or pain – and for me it was pain!”

Potential in the landscape was identified after the former owners carried out work on some of the claypans. A 400mm high bund was graded to form large shallow ponds. The theory of this method was that the water would soften the clay seal and allow seed to germinate.

The impact of ponding on the claypans was minimal but Graham noticed that there was significant growth on the edges of the claypans where the surface had been disturbed.

Graham states, “In 2001 the place was pretty well degraded and the whole ecological system had broken down. I felt that if we could restore the health of the rangeland that it could withstand drought… low rain in a healthy system could still be productive. It seemed to me that rangeland science was about understanding how the rangeland currently works, not about trying to change or improve it”.

Graham chose to build on the former owner’s ponding operations, initially by using their small Ferguson tractor to mimic the use of a larger grader, and then later using a mouldboard plough to break up the hard capped surface. At this point, he did not have the numbers of cattle that he needed to create the disturbance necessary, and recognised that using a small tractor, although relatively economical, was not nearly as efficient or effective as using cattle. Particularly someone else’s cattle.

Graham eventually identified that regeneration of the claypans and planned rotational grazing could allow the property to develop into productive rangeland with prolific native grasses and herbage suitable for cattle grazing. Agisting cattle allowed Graham to increase his numbers, which he then used to break up the surface of the claypans.

The results were significant, with earlier colonisers like copper burr (Sclerolaena spp.) responding quickly to the changed conditions, followed in due course by a variety of native grasses spreading over the bare surface.

Left: Grass seeds in disturbed claypan. Right: Regeneration of early coloniser, copper burr.



In achieving the potential they envisaged on Bokhara Plains Graham recognised that claypans were not a natural formation and could be restored to rangeland. Combined with Holistic Management principles, Graham determined that rangelands would respond positively to managed grazing practices, using livestock as partners.

After reading Allan Savory’s book, Graham undertook a RCS Grazing for Profit course followed by four years in the Executive Link program. “We also became inaugural participants in a program called Enterprise Based Conservation (EBC) through which we accessed some financial help to undertake a significant water and fencing project for much better control of grazing management.” This pilot program was run by WEST2000 Plus and included a five-year conservation agreement on land placed under voluntary conservation management.

Graham and Cathy also undertook major changes in their livestock enterprises, moving from sheep breeding to trading, then to agistment sheep to agistment cattle and now also cattle trading. They specialised in the larger herbivores from 2007 when they recognised that cattle were giving much better ecological and management benefits.

Graham follows three guiding principles for Bokhara Plains:

  • Match the stocking rate with the carrying capacity of the land.
  • Plants need adequate recovery.
  • Monitor what is going on across the property, make plans, then manage against these plans.



Pasture recovery before returning with livestock is paramount…

Graham and Cathy planned their infrastructure around their grazing strategies. The fencing forms a number of ‘wagon wheels’ with a watering point at the hub, producing a number of ‘cells’. For additional fencing to match stocking rates to carrying capacity, they rely on electric fencing supplied from an inverter connected to mains supply at the house.

Fencing was initially based on the original infrastructure but Graham has modified the layout to reflect his requirement that stock should preferably not travel more than 1.5km to access water. On Bokhara Plains fencing cost about $400 a kilometre for material and labour. Graham points out that the cost can be recovered in a year with increased production from the planned rotational grazing and Holistic Management strategies. Much of the labour for fencing was on-farm, comprising Graham, Cathy and their daughter, Harriett.


This image has an empty alt attribute; its file name is cs-bokhara031.jpg
Graham discussing his stock trading chart

Graham and Cathy plan their grazing on availability of pasture at any one time. Graham explains, “Agistment is the basis of our operations and we trade against the variation of available pasture. Pasture recovery before returning with livestock is paramount, along with creating the ‘beneficial impact’ described previously. We monitor pasture availability and plan and manage against that”.

The agistment runs at $/head/week basis for 6-12 months. Stock trading is used to balance the agistment with pasture availability. Stomach and skin parasites are not an issue in the region and stock are not drenched or treated for lice.

In their stock trading operations, Graham and Cathy use strategies developed by Bud Williams in the USA, and now taught by KLR Marketing in Australia. These are based on keeping the three inventories of price, available pasture and stock holding in balance. Using a ‘sell-buy’ process rather than a ‘buy-sell’ process, in the balanced inventory context, they can decide on selling and re-stocking options.

This image has an empty alt attribute; its file name is cs-bokhara041.jpg
Increased pasture availability has enabled a significant increase in stocking rates

Graham and Cathy use a 12 month rolling rainfall figure to calculate the stocking rate per hectare by month and annually per 100mm of rain. Using this method, they can reduce stock accordingly when conditions deteriorate and do not have to purchase feed. While they have de-stocked in earlier times, they are confident that they will not have to do so again.

Using these methods, stocking rates have increased exponentially on Bokhara Plains. Graham and Cathy have been measuring their stocking rate or DSE* days per hectare per 100mm of rain since 2002, and have seen their benchmark capacity lift from 56 DSE days per hectare to over 100.

Standing at a watering point where six paddock fences join, Graham points to a 60 hectare paddock with 1100 cattle spread throughout the tall grass, “That paddock would typically only carry about four head year round in a set-stocked operation”.



Plan as if there will be no rain, then adjust when it does arrive!

Graham acknowledges, “Water supply is the limiting factor for our grazing enterprise”.

Previously, Bokhara Plains had a very poor water cycle, with substantial runoff from the bare eroding soils. Livestock water was all supplied through open ground tanks, and the two river systems that transect Bokhara Plains, had a long history of set stocking.

Graham’s current sources are the two rivers and access to a bore. The rivers do not always flow, but when it is at high flow he stores water from the Bokhara River in a dam. Both rivers have now been fenced off to allow for strategic grazing. The old ground tanks have been blocked off or fenced in, and 35km of poly pipe has been laid to nine poly tanks and troughs. Water from the dam is pumped to stock watering points. The header tanks at the water points gravity feed to the troughs.

Graham structures his grazing plan around water availability and understands how much water is required on a daily basis per 1000 head of cattle. He works on his principle of, “Plan as if there will be no rain, then adjust when it does arrive!”

The waterpoints are the ‘hub’ for multiple paddocks in the wagon-wheel design. They are high-use areas when accessible (left), but the pasture can recover after rest (right)



This image has an empty alt attribute; its file name is cs-bokhara061.jpg
Improving the soil has enabled increased ground cover and nutrient cycling – visibly different to remnant claypan

The soils across Bokhara Plains, which have not yet been subject to soil testing, are varied. The country off the Bokhara and Birrie rivers comprises typical black soils, with lighter Mitchell grass (Astrebla spp.), Neverfail (Eragrostis setifolia), Queensland bluegrass (Dichanthium sericium) and bladder saltbush (Atriplex vesicaria) country interspersed with scalded claypans in between the rivers.

Claypans are a dense, compact, slowly permeable layer in the subsoil with a much higher clay content than the overlying material. The subsoil claypan layer becomes exposed when original topsoil is lost or degraded, exhibiting very different physical properties and behaviour. Claypans are usually hard when dry, and plastic and sticky when wet. They limit or slow the downward movement of water through the soil.

The techniques applied by Graham however, have enabled the bare ground to be converted to productive rangeland. The vastly increased ground cover has demonstrably increased overall soil biological activity, particularly the visible beneficial decomposing fungal activity in the soil, which regenerates healthy topsoils. Reducing paddock size and the successful grazing strategies are pointing towards potentially even higher stocking rates and therefore towards greater soil fertility as animals spread more dung and seed.



At acquisition, the Bokhara Plains was a dustbowl. Approximately 50% of the total land area was bare ground, and aerial photographs showed huge areas of claypan. However, there were reasonable patches of Mitchell grass and bladder saltbush in places. Besides providing some basic stock feed, this existing vegetation provided a seed bank.

This image has an empty alt attribute; its file name is cs-bokhara071.jpg
Vegetation diversity and coverage has significantly increased

The WEST2000 Plus Project on EBC, that predated the intervention of the CMA, was aimed at increasing ground cover. The project paid on percentage of ground cover achieved. Graham and Cathy had a personal target of 70%, although the EBC target was 40% which is recognised as a critical threshold point to stop wind and water erosion, and was measured in the most likely month for being dry – October. Graham and Cathy noticed that the areas of high-impact grazing recovered better and they could see that, over time, stocking rates could be increased. They amended their own target to “100% ground cover 100% of the time”, and although difficult to achieve, Graham believes it should be every land managers goal whatever the environment. It had become obvious to Graham and Cathy that grazing strategies had to be part of their vegetation management and enterprise-based conservation.

The planned rotational grazing practices have given young trees and shrubs respite from literally being ‘nipped in the bud’. Independent monitoring from the beginning of the EBC Project has shown a steady increase in the number of native trees, increased ground cover and the presence of perennial grasses.

They also noticed that the best gains came from improving good land and not necessarily from regenerating claypan. They therefore concentrated their efforts on the good land first.

Weeds were not previously a significant concern on Bokhara Plains, and now, besides small and decreasing outbreaks of Bathurst Burr (Xanthium spinosum), which they deal with by hand, there are no appreciable weed and pest issues on the property


Graham and Cathy are admirers of the Joel Salatin approach of many synergistic enterprises stemming from the one farm. Aligned with this approach they have a willingness to diversify with complementary enterprises. One such enterprise has seen the development of a tourism venture ‘Bokhara Hutz’, which they have grown over the last ten years into a reliable source of income, particularly through the four separate occasions when they have totally de-stocked the property.

This successful 30 person capacity farm stay business also provides a venue for local events, such as weddings and parties. Plans for the future include generating more farm produce, to be less reliant on off farm purchases.

Cathy notes, “Our diversification into tourism has allowed us to reach toward our goal of drought proofing our business”.



The infrastructure design and layout, the ready availability of water to stock, the rested and fresh pastures and the careful management of all farm operations combine for exemplary Holistic Management practices. This is a far cry from when Graham and Cathy took over six dusty paddocks and a flock of struggling sheep in 1999.

Graham summarises, “This has so far been a ten year learning process, which we expect to continue for some time yet. Installing infrastructure, etc., was implemented with some financial help through the EBC project involvement, however much of our innovation has been off the back of work done by many friends, colleagues and other people I’ve met while learning and studying all over the world [Nuffield Scholarship 2008], due to their desire and preparedness to share their own experiences”.

Our potential to improve our ecological resource, particularly in the semi-arid areas, is far greater than conventional rangeland science understands or accepts

Through intensive cattle grazing using agistment and trading to give flexibility in numbers, Graham and Cathy have revegetated and rejuvenated a much degraded landscape. “We have taken Bokhara Plains from a six paddock extensive layout with poor water security, to a 100 plus paddock planned cell system with fully reticulated and controlled water system. We have also diversified into tourism / accommodation, and have hosted many farming tour groups in our facility, Bokhara Hutz.”

Graham and Cathy’s original goal was to develop their property to be able to run around twice the original estimated 56 DSE days per hectares per 100mm of rainfall. They now see that the potential is much greater, perhaps up to three to four times that DSE rate, whilst continuing to build positive environmental outcomes. These increases are possible, due to the resilience in their pastures through increased diversity of their ground cover and improvements in soil health brought about by their grazing management. Their profitability is now based on a sell/buy approach, where the ups and downs of the markets are smoothed out. And to provide further surety, a careful balance between agistment operations and a trading herd is maintained.

Graham points out that the “economics stack up” – the potential for increased production on the property is better than investing in more property.

“Often people in the area believe that expanding their land holding is the only way to survive in the light country of the region”, states Graham. “A quick cost benefit analysis suggests that this is not the case at all. Enterprises of our size can prosper. At a rate of around $12 per acre to establish water points and fencing will allow intensive grazing approaches to be established, with immediate improvement in the quality of pastures, percentage of ground cover and health of the stock. These improvements come with no additional overheads, unlike purchasing additional land at upwards of $100 an acre and the associated taxes and other costs.”

He continues, “And, it’s all about flexibility. You can’t manage without people and animals. Smaller places are the answer, not more land. We should make the most of what rain we get and develop the land we have. We always plan for no rain. If there is a rain event, then we re-plan”.

However, Graham laments, “Our potential to improve our ecological resource, particularly in the semi-arid areas is far greater than conventional rangeland science understands or accepts”. Reliance on science leading the way, with a lack of supporting policies and unreasonable bias against livestock, provides some of the greatest impediments to wider adoption of the sort of practices that are employed at Bokhara Plains. Indeed, Bokhara Plains is a shining light, in stark contrast to others seen around the landscape when driving through the west of NSW. For the Brewarrina area, a stocking rate of 4 head of cattle (24 DSE) to 60 hectares is considered suitable. That Graham can have 1100 head in that same area for two days might be considered by some to be ridiculous and not sustainable.

Graham points out that it is important to manage equity and debt levels against cash flow to ensure potential to increase carrying capacity and the possibility of increasing the margins from stock trading. In addition, in the context of all the activities, it is necessary to watch for ‘staff burn out’ and to employ additional labour at the right time.

For Graham and Cathy, reduced overheads through increased productivity and the use of contractors for specialised operations has contributed to more satisfying outcomes and better use of family time.

Graham’s practices are regenerative and enable a much greater stocking rate



Graham and Cathy note, “Since we first had a change in thinking back in 2001 we have endeavoured to be able to help others achieve the same. Our view is that we want to live in a more profitable farming environment, with more neighbours not less, and in a community that is not struggling or welfare reliant”.

Graham is an active mentor to others in developing their enterprises to more sustainable grazing and enjoys the opportunity to encourage others through both mentoring and education programs.

Many people who attend various training courses that educate people on the possibilities of changing what they do, still find it difficult to take the first step when they return to the farm. Support needs to be provided to people to help them on their way. This fact has been recognised by the Western CMA who has ‘hired’ successful grazing course graduates to mentor locals to assist them in their transition.

…we want to live in a more profitable farming environment, with more neighbours, not less, and in a community that is not struggling…

Many people who attend various training courses that educate people on the possibilities of changing what they do, still find it difficult to take the first step when they return to the farm. Support needs to be provided to people to help them on their way. This fact has been recognised by the Western CMA who has ‘hired’ successful grazing course graduates to mentor locals to assist them in their transition.

Graham is considered a role model for other farmers in the wider region wishing to consolidate their formal grazing management training, through his Western CMA sponsored mentoring of four farming business. This activity includes on-farm visits and teleconferencing to help his clients focus on outcomes, not issues.

Graham’s training was based on the RCS Grazing for Profit course and this program allows for expansion of this support through a well developed extension program.

Graham and Cathy now enjoy many social benefits from the enterprise. Bokhara Plains has hosted ‘Keep In Touch’ days for graduates of earlier grazing management courses, and field days (including hosting his mentors – Allan Savory and Terry McCosker at different times). On these days around 150 people, many of them young farmers, eager to learn and talk about a wide range of challenges both on farm and more strategically are able to share experiences.

Cathy remarks that one of the clear positive community aspects of their lives now is the opportunity to sit down at dinner most nights with a wonderful and varied group of people from all walks of life.

Graham was adjudged the NSW Young Farmer of the Year in 2005, relatively early in the transformation of Bokhara Plains, and has gone on to be recognised with Carbon Cocky and CMA awards.

Graham and Cathy have been involved in the P & F at a local school, the Rural Financial Council, and in the local Show and Rodeo committee. They also host an annual visit to Bokhara Plains by the Warringah school group as part of a sister city relationship with Brewarrina.

The Bokhara Hutz accommodation package has also delivered welcome benefits for the family. Cathy and Graham both enjoy the opportunity to interact with their visitors and interested farming groups coming to visit the property. “It provides another opportunity to show people what we have done over the years and to learn from those around the table.”






Ashley and Carolyn McMurtrie were driven to seek new ideas on sustainable rangeland management after arriving on the run-down property that was Gilgunnia Station. By implementing a dual grazing system focused on managing total grazing pressure and forage rest and recovery time, they are now building a reliable and productive enterprise that is increasingly resilient to the effects of drought.




38 km north west of Cobar, Central West NSW

ENTERPRISE: Dorper Sheep and Boer Goats, opportunistic feral goat harvesting

PROPERTY SIZE: 10,00 hectares





  • Implementing total grazing pressure fencing to control the access of unmanaged goats and kangaroos to pastures.
  • Developing two grazing systems, one intensive, applying all available management techniques to improve landscape performance on developed areas of the property, and one extensive, using fewer resources and maintaining a degree of production on as yet undeveloped areas.
  • Using a planned (holistic) rotational grazing system on intensively managed paddocks providing periods of rest for pasture to fully before re-grazing.
  • Constructing water-spreading contour banks to slow and spread surface running water after rain.
  • Selected mechanical and chemical removal of invasive native scrub to reinstate a grassy open woodland mosaic.
  • Trapping feral goats and reinvesting income into further infrastructure developments to reduce goat impact on the landscape.


  • Building a more resilient business and landscape by improving landscape ecological function.
  • Continually increasing groundcover and diverse palatable perennial species in intensively managed paddocks regardless of seasonal conditions, delivering greater consistency of production and growth response to rainfall.
  • Producing biomass of over 4000kg per hectare on initial intensively managed paddock in April 2014, up from 125kg per hectare in the same paddock in 2005.
  • Ability to run four-times the Livestock Health and Pest Authority (LHPA) assessed stocking capacity on 20% of the property.
  • Stopping erosion and improving rainfall infiltration, lifting previously bare paddocks to a new level of productivity within the intensive area.
  • Developing a management system that allows advanced planning and improved ability to take advantage of stock sales and changes in seasonal conditions.
  • Establishing a program of continual landscape and production improvement, reinvesting to expand high-performance managed areas of the property.
  • Building a stable and reliable business that has reduced personal and family stress and markedly improved family lifestyle.


A landscape that is most resilient to the impacts of drought is one with high proportions of continual groundcover, supporting healthy soils and effective rainfall infiltration and retention. Such a landscape supports a biodiverse ecosystem with healthy nutrient cycles of growth, breakdown and decay.

Many years of over-utilisation of natural resources in the Western Division have resulted in significant degradation of landscape condition, leading to sparse groundcover, widespread incursions of invasive native shrubs and trees, exposed hard-capped soils and a cycle of continuing degradation. Combined with the extremes of climate this region is subject to, the landscape and pastoral production are particularly susceptible to the impacts of drought.

Innovative farmers in the region however, are illustrating that this vulnerability is not a result of any fragility in the landscape, but conversely, that active management can restore landscape health, build a regenerative cycle and deliver sustainable production regardless of seasonal conditions.

Ashely and Carolyn McMurtrie, of Gilgunnia Station north of Cobar, have, over the last 10 years, commenced a program to build a successful enterprise and regenerate their 10,000 hectare landscape. They now run a successful Dorper flock ram and commercial lamb breeding business, and, having significantly improved 20% of their property, are well on their way to building all of Gilgunnia into a resilient state.

The key factors influencing the resilient landscape and business being built on Gilgunnia are:

  • Implementing total grazing pressure fencing, enabling control of wild and domestic grazers and allowing pasture rest and recovery.
  • A focus on increasing and maintaining groundcover, particularly palatable perennial species, which also protect the soil and increase rainfall infiltration and retention.
  • Starting with development of one high-performing paddock to produce biomass that can be relied on when conditions require, then expanding across the property.
  • Running the greatest value stock on the feed available to maximise profits within the carrying capacity.
Ashley McMurtrie shows the Soils for Life team around Gilgunnia Station.




Gilgunnia Station is part of Australia’s extensive rangelands which cover 75% of the continent. Gilgunnia comprises 10,000 hectares on the Cobar Peneplain, on the eastern edge of the Western Division of NSW. The Cobar Peneplain is one of six bioregions that lie in Australia’s semi-arid climatic zone. Summers are characterised by hot, persistently dry weather interspersed with rare storms with often heavy rainfall. Since the current series of measurement began in 1962, Cobar has received an average annual rainfall of 398mm, ranging from 101mm in 1982 to 710mm in 2010.

There are no natural surface waters on Gilgunnia, and few elsewhere in the area. Stock and domestic water supplies are provided by ground tanks (dams) of up to 10m deep filled by surface run-off. Water supply from these tanks is generally reliable due to their depth and there is usually sufficient rainfall in summer to replenish them, despite high evaporation rates.

Gilgunnia consists mainly of rangeland in a natural state but of varying condition. Soils on the property are predominantly red earths, shallow on the gravelly rises but deeper on the drainage flats. Nutrient stores in soils, particularly in the rangelands, are generally held within the upper few centimetres of the soil, but on Gilgunnia, like many properties in the region, most of this material had been lost through sheet erosion. Soils become hard-capped through this declining surface structure which consequently reduces rainfall infiltration. Bare ground and a lack of perennial grass presence have contributed to hard-capping and low levels of soil carbon and subsequently the landscape is highly susceptible to the impacts of short term and multi-year droughts.

Typical landscapes in the region are degraded, comprising red gravelly earths and thickets of invasive native species.

The soil landscapes of Gilgunnia support typical plant communities found across the Western Division. The natural vegetation on the gravelly rises is mulga (Acacia aneura) woodland with a shrub layer of turpentine (Eremophila sturtii), budda (Eremophila duttonii), punty bush (Cassia eremophila) and emu bush (Eremophila longifolia). These also host sparse groundcover of copper burr (Sclerolaena parallelicuspis) and occasionally speargrass (Heteropogon contortus). The broad drainage flats support sparse poplar box (Eucalyptus populnea) with a dense shrub cover of mainly turpentine with sparse groundcover and isolated perennial grasses.

Over a century and a half of continuous grazing in the region, combined with periods of carrying large stock numbers into multi-year droughts caused considerable and widespread land degradation and obvious changes in the condition of the native vegetation. A particularly damaging period occurred in the late 1800s and early 1900s which coincided with devastation caused by rabbit plagues. Likely as a result of these historical management practices, turpentine, budda, punty bush, emu bush and mulga now act as invasive native species (INS) in this landscape, forming dense thickets across broad areas.

Left unmanaged, this landscape is vulnerable to further degradation. Linear surface features such as tracks and grader windrows are a known cause of rill and gully erosion. Dispersed sheet runoff flows are concentrated by these features, causing extensive erosion systems that drain moisture from surrounding areas.


Feral goats place significant unmanaged grazing pressure on forage in this part of the Western Division.

Conventional management in the district over many decades has typically consisted of continuous or set stocking of Merino, and more recently Dorper sheep and the opportunistic harvesting of feral goats (Capra hircus). An absence of predators and abundance of man-made water supplies has allowed populations of feral goats and kangaroos to proliferate. Many properties in the Western Division are not able to manage forage resources, particularly in times of drought due to the presence of these unmanaged grazers, which can comprise up to 50% of total grazing pressure on the landscape. 1C. Waters, G, Melville, A. McMurtrie, W. Smith, T. Atkinson, and Y. Alemseged (2012), The influence of grazing management and total grazing pressure fencing on groundcover and floristic diversity in the semi-arid rangelands

Goats are hardy under drought conditions due to their ability to browse trees and shrubs and utilise a wider range of forage than other stock. Moreover, these unmanaged grazers are not constrained by conventional pastoral fencing and actively migrate to where the feed is growing, regardless of paddock boundaries.

Both these nomadic grazing animals ensure that pastures in the region are constantly over-utilised and that groundcover is minimal. This leads to reduced infiltration of available runoff and the replacement of palatable and perennial pastures with unpalatable or annual species. Such high grazing pressure causes groundcover to be dominated by annuals, and pasture production occurs in short episodic growing seasons followed by induced ‘drought’ conditions. Under these conditions and with the onset of seasonal dry periods, animal production is dependent on the ability of stock to browse trees and shrubs.

Consequently, pastoralists are unable to conserve feed for drought and stock must continually compete with the unmanaged goats and kangaroos. The downward spiral of bare ground, degraded nutrient levels, poor infiltration of rainfall, limited recruitment and rehabilitation of adapted plant communities results in these landscapes being highly susceptible drought and to the impacts of post-drought heavy rains.

When Ashley and Carolyn McMurtrie arrived at Gilgunnia in 2004, the landscape and soils had experienced many decades of traditional pastoral management and were depleted and degraded. The conventional business model previously used on the property did not demonstrate the ability to manage natural resources for either production or natural resource goals.




The McMurtries arrived in the region from the east coast and settled on Gilgunnia. The property was run-down without a single paddock that effectively held stock and in the early stages of what was later to become known as the Millennium drought 2A.I.J.M Van Dijk, H. E. Beck, R. S. Crosbie, R. A. M. de Jeu, Y. Y. Liu, G. M. Podger, B. Timbal, and N. R. Viney (2013), The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society, Water Resources Research, Vol 49, Issue 2. It was evident that previous management models were not working. Ashley and Carolyn were consequently driven to seek new ideas on rangeland management in order to make a viable living.

Their research suggested that when originally settled, the Cobar Peneplain comprised grassy open woodlands, a legacy of Aboriginal burning practices. In the mid to late 1800s of settlement and pastoral development the Western Division vegetated landscape carried a much higher number of sheep than it does today. The gravelly rises would have supported open shrubby vegetation with a groundcover of annual and low perennial grasses such as bandicoot (Monachather paradoxa) and mulga Mitchell grasses (Thyridolepis mitchelliana). The drainage flats would have supported an open woodland of poplar box with a dense cover of robust perennial grasses including kangaroo (Themeda triandra), Queensland blue (Dichanthium sericeum), red-leg (Bothriochloa macra) and curly windmill grasses (Enteropogon acicularis).

In the face of the reality of Gilgunnia, Ashley and Carolyn decided to investigate what management practices they could apply to restore a productive landscape with such vegetation.


The McMurtries sought local advice and easily identified who to approach as these people were running viable businesses despite the drought conditions. This included those who used traditional business models but maintained an extraordinary work ethic, as well as those who were actively applying new ideas to work with nature and natural cycles.

Through these local relationships they were introduced to Holistic Management, which has since been consolidated with formal training with Holistic Management educator Brian Marshall. Holistic decision making provides a framework for considering all resources and management tools in working towards a specified goal.

Planned rotational grazing (also referred to as holistic planned grazing) is a key Holistic Management practice. This practice aims to replicate the natural behaviours of large grazing animals on the landscape – where large herds graze an area intensively for a short period and then move on, not returning until pastures have fully recovered. These grazing methods encourage more abundant and diverse pastures and the opportunity for pastures to rest.

Management of total grazing pressure combined with planned rotational grazing provide the tools to restore landscape health and maintain production.

The McMurtries participated in a Resource Consulting Services (RCS) Grazing for Profit course in 2006 and a follow-up Pasture to Pocket course in 2009. The Grazing for Profit course involves holistic integrated management training which focuses on the use of natural plant, animal and water cycles as an integral part of on-farm decision making 3RCS Core Courses, Grazing for Profit Whilst informative, Ashley found that some of the teachings from this course were less applicable to the drier conditions of the Western Division and his breeding enterprise, than to the eastern environment for which they were developed.

Ashley and Carolyn also established a relationship with the Western Catchment Management Authority (CMA), now Local Land Services (LLS) Western Region, for advice, funding opportunities, and participation in programs and research, a relationship which they have maintained ever since.

They participated in the Western CMA Western Innovators Program, a farmer to farmer mentoring program which aimed to increase the capacity of landholders to manage their properties for the protection of soil, biodiversity and other ecosystem services, as both a participant in 2012 and later in 2013 as a mentor.

Ashley and Carolyn also developed skills in Geographic Information System (GIS) mapping and completed a year of an Environmental Science degree. However, the latter was discontinued as much of the material presented was found to be dated and not helpful for practical property management.

Ultimately the McMurtries identified that management of total grazing pressure, the combined grazing pressure exerted by all stock – domestic and wild, native and feral – on the vegetation, soil and water resources of the property landscape, combined where possible with planned rotational grazing, would provide the tools by which they could restore landscape health and ecological function and maintain production – regardless of seasonal conditions. And so they conceived the dual system grazing model.

Their relationship with local innovators Andrew and Megan Mosely of Etiwanda has provided an ongoing mentorship and helped the McMurtries to develop a holistic framework for making decisions on their property. The Moselys have vast experience in implementing total grazing pressure management and holistic grazing systems in the Western Division, and they initially assisted Ashley and Carolyn in developing a property management plan for their dual system grazing model.



The dual system grazing model applied on Gilgunnia includes a combination of intensively managed grazing across 1,000 hectares and extensively managed opportunistic grazing over the rest of the property.

Gilgunnia Station property map, illustrating areas currently surrounded with TGP fencing.

The dual system was developed as a risk management approach. Implementing the intensive grazing system and with best practice techniques was capital intensive with – at the time – unknown outcomes, although others had used similar approaches with success. There were no case study examples of the range of best-practice approaches being used together. Risk was mitigated by developing the extensive system at the same time, as results were better understood with this model. The intensive system was also developed incrementally, trialling each new technique in a test paddock to see how the landscape responded, before application to other paddocks, as time and resources allowed.

The first stage of implementing the new grazing management system was the construction of goat trap facilities on all water sources to provide cash-flow to fund total grazing pressure (TGP) fencing and to begin reducing goat impact.


Intensively managed grazing attempts to increase production or utilisation per unit area or production per animal through a relative increase in stocking rates, forage utilisation, labour, resources, or capital.

In some paddocks, invasive native species are mechanically removed to re-create an open woodland. This paddock was ploughed just weeks before this photo.

On Gilgunnia this has involved the construction of secure TGP fenced paddocks, with all wild grazers removed. There are currently seven paddocks of between around 48 and 156 hectares over a total of 1000 hectares in the intensive grazing system. The aim is for paddock sizes to eventually be between 120 and 160 hectares, which are considered small for the Cobar district. Smaller paddock sizes enable accurate pasture monitoring, are easier to keep free of unmanaged grazers and easier to maintain infrastructure.

The McMurtries have applied a range of best practice techniques in most of these paddocks, most trialled in one paddock first. As resources have allowed, in a number of paddocks Ashley has performed mechanical and chemical removal of INS to restore open woodland. Though acknowledged as not ideal due to risk of wind and water erosion of the exposed soil, Ashley has ploughed a number of paddocks to fully remove the pervasive turpentine bush. A side benefit of this practice however, is that it helps to break up the claypan and kick-start conditions for moisture infiltration and germination opportunities. Such a result is often achieved by large mobs of cattle in other holistically managed properties.

Water-spreading banks slow and distribute runoff, reducing erosion and improving infiltration. The banks were constructed 12 months prior to this photo and the paddock grazed 4 months prior.

Water-spreading banks (explained in more detail below) have also been constructed on a number of paddocks. Depending on rainfall, it does not take long for colonising pioneer species to appear in these areas of improved water retention. After a period of rest to let plants establish, planned rotational grazing is implemented and timed according to a desired level of pasture utilisation and the trigger points of specific species that are being encouraged.

The rest and recovery time provided by Holistic planned grazing and TGP fencing alone is sufficient to improve groundcover.

Other paddocks in the intensive grazing system have not been cleared, ploughed or had water-spreading banks constructed, but are still showing continuous improvements to ground cover and forage growth through the TGP control and recovery time allowed by planned rotational grazing alone.

The intensive grazing system requires more skill in management and attention to detail. For example, grazing strategies are based on regular monitoring of pasture species and the identification of trigger points. Close monitoring of unwanted grazing animals is also necessary to ensure that pasture objectives are met during the spelling phase.


Extensively managed grazing areas are larger and still impacted by uncontrolled grazing pressure. Stock have access to graze only when conditions are good.

Extensively managed grazing uses relatively large land areas per animal and a relatively low level of labour, resources, or capital.

The McMurtries practice this over the 9,000 hectares of their property not yet developed for intensive management. This area is usedfor opportunistic grazing when there is adequate forage, while maintaining the capacity to destock when conditions deteriorate.

Two paddocks within this system of 690 and 741 hectares are also enclosed with TGP fencing and provide more reliable feed availability than remaining paddocks during poorer seasons. This system is evolving as funds become available to erect further perimeter TGP fencing. In the interim, unmanaged goats are strategically harvested to reduce their impact on groundcover and forage resources.



Fencing using hingejoint and barbed or plain wire is essential to manage total grazing pressure and ensure pastures have the opportunity to recover.

Both grazing systems incorporate TGP management through the use of hingejoint fencing systems. This TGP fencing to control the goats and kangaroos generally consists of 7/90/30 hingejoint fencing supported by top, middle and bottom support wires, topped by plain or barbed wires.

The fencing is designed to provide a strong physical and psychological barrier to prevent unwanted grazers access to the paddock. Higher fencing that provides a complete physical barrier in all places at all times was assessed as too prohibitive a cost.

The hingejoint fencing used is seen as relatively easy to erect and maintain, and cost effective given the distances required and its long lifespan. Fencing designs on Gilgunnia have evolved with experience over time, with initial fences incorporating both hingejoint wire and electric offsets. However, based on personal choice, the typical fencing arrangement now comprises 7-line hingejoint with 9 metre post spacing.

Originally the ten ground tanks situated across the property and filled by surface water runoff and rainfall provided all stock water. These were open to stock and unmanaged grazing animals at all times, providing no checks on unwanted consumption or contamination. All ground tanks have now been fenced and stock water is supplied by a combination of concrete and plastic troughs and some direct access to the ground tanks, which is slowly being replaced by a trough system. Where possible water is supplied in corners of interfacing paddocks to lessen costs of infrastructure and to ease mustering.



The Livestock Health and Pest Authority (LHPA) provided an initial assessment, based on standard practice in the region, of a carrying capacity of 1400 DSE across the then entire property of 13,000 hectares. However, initially the property could only run goats due to the poor condition of pasture and the only forage available being by browsing trees and shrubs. Boer goats were introduced and used as a land management tool as they were able to browse certain shrubs aggressively and remove pasture weeds such as Paterson’s Curse (Echium plantagineum) and Bathurst Burr (Xanthium spinosum). With improving landscape condition after TGP fence erection, pastures became better suited to running sheep.

Dorper sheep provide a greater value product than goats.

A Dorper flock ram and commercial lamb production enterprise was then developed, producing a much higher value animal than Boer or feral goats for similar grazing pressure. Dorpers are of robust build, provide good meat and are highly suitable for variable rangeland conditions. Their strong survival drive does mean they will push through less substantial fencing if feed is required. However, with TGP fencing and the regular quality feed provided by planned rotational grazing, they are a valuable product on Gilgunnia. Ashley currently runs a flock of 900 DSE over 2000 hectares – four times the LHPA assessed rate. These numbers are increasing as the intensively managed system expands and matures.

Cattle complement the animal impact of sheep, disturbing soil, crushing litter and spreading fertiliser.

In the last 12 months a few cattle have also been introduced on to the property. Run in a single mob with the sheep, the impact of the cattle complements the management of the other stock within the intensive system, delivering the benefits of multi-species grazing.

To most effectively respond to changing seasonal conditions and feed availability, Ashley still maintains a herd of Boer goats, which are run in the same mob as the sheep and cattle. These Boer goats are maintained as a self-replacing flock of lower dollar and emotional value, which can easily be sold to reduce stock numbers and grazing pressure if conditions require. This enables Ashley to maintain his Dorper production flock regardless of conditions and ensures that landscape condition is always improving, as matching the stocking rate with carrying capacity is fundamental to this grazing management system.



Specially constructed gates allow feral goats to pass through to the watering point until they are locked when trapping takes place.

Opportunistic harvesting of feral goats comprises a significant income stream for many properties in the region and on Gilgunnia has been the principal stream for financing property improvement and furthering development of both grazing systems. The opportunistic harvesting of feral goats is highly dependent on local populations, seasonal water supply – goats are hard to trap when surface water is abundant – and a fluctuating price from processors in response to demand, supply and international prices.

Feral goats in the trapyard enclosure.

Each of the ground tanks on Gilgunnia has now been fully enclosed by TGP fencing, with specific gates and pens constructed to form the trap yard. Access to the water is only possible through the specially designed trap gates. These gates work by allowing access through a set of spring-loaded spears, and exit through a second set. These are both left open so that the goats become accustomed to moving through the gates to access the water. The exit gates are then locked closed so that the goats cannot escape.

Ashley typically traps feral goats four to five times a year, mostly during the warmer seasons from October to April when there are no alternative sources of water. Trapping is generally performed across the whole property at the one time, which also enables Ashley to perform a form of census of the goat population. Trap yards are generally set across a three day period to trap not only the nannies and kids, but also the billy goats which can be more suspicious and hold out longer to access the water. The goats are then moved through a wing in the enclosure up to a set of yards where they are sorted and moved to a central set of yards to be transported for sale.



In unmanaged landscapes in the region groundcover levels can be less than 20% for much of the time, so heavy rainfall rapidly runs off the gravelly rises and through the flats without infiltrating. Runoff typically forms as sheet flows into broad drainage flats that traverse the property, flowing on to neighbouring land. Ground tanks fill rapidly during storm rain, reflecting poor infiltration across the landscape.

In order to help address this issue, the McMurtries have invested in landscape engineering in the form of water-spreading banks in a number of paddocks in their intensive system. This technique includes the construction of a series of earth contour banks and channels that repeatedly reduce the velocity of runoff and spread flows across broad areas. It also provides the landscape with the maximum benefit from isolated or smaller rainfall events. This improves infiltration, reduces the concentration of flows and promotes the growth of perennial pastures towards the ridge lines. The then Western CMA provided the layout service to deliver the specific design required for the banks to be effective.

Water-spreading banks at work after a 25mm rainstorm.

Water-spreading is suited to broad flats between 100 metres and 1 kilometre wide. The system contains a series of banks on the contour, holding and spreading water through the system. The banks serve to stabilise erosion (gully or rill erosion) and increase water infiltration. Water-spreading systems increase soil nutrients and groundcover over time.

Seeds withinthe soil are quick to germinate with the increased water and rest from grazing. This image shows 12 months growth with one graze period.

In this region of the Western Division, the full benefits of water-spreading can only be realised if it is part of a TGP control system with managed planned rotational grazing, in order for the land to be rested for new pastures to establish.

The environmental benefit of these water-spreading banks on Gilgunnia is obvious to an on-site observer. The banks are slowing runoff and improving infiltration on otherwise degraded soils. For example, a paddock completely cleared of INS 12 months previously is now covered with a diverse range of plants and increasing numbers of desirable perennial species, all from existing seed bank reserves in the soil.

The initial ‘trial’ paddock now comprises thriving perennial pastures.

The initial trial paddock, already recovering prior to the construction of water-spreading banks in 2012, appears dramatically different to the surrounding landscape with a dense cover of red-leg grass and increasing numbers of other palatable perennial species.

Recently, landscape engineering changes have also been made to reduce runoff diversion and erosion resulting from roads, tracks and fencelines. Channels have been created to direct this runoff towards the paddocks with the waterspreading banks, further adding to the water being provided to these increasingly productive paddocks.

These improved areas across Gilgunnia are more reliable in pasture production in deteriorating conditions, and are more able to retain groundcover and protect soils against seasonal impacts.


  • After erection of the TGP fence, feral goats within the area are removed
  • INS removed and water spreading banks constructed (in selected paddocks and as resources allow)
  • Initial rest period of up to 12 months allows existing pasture to recover
  • First grazing is timed according to plant germination to ensure desirable species have the opportunity to seed
  • A longer rest period after first grazing allows all juvenile plants time to establish and also give mature plants extra resting time
  • Then grazed at different times of the year, always allowing for germination of preferred plant species
  • Paddocks are grazed two or three times per year to 40-60% pasture utilisation

4 A. McMurtrie, J. Sandow, and P. Theakston (2010), A comparative analysis of two feral goat management methods commonly used in the Cobar districts to restore native ground cover



The capital required came from the McMurtrie’s own savings, cash flow from the harvesting of feral goats together with cost-share incentive funding from the Western CMA.

The return on investment is easy to see on Gilgunnia. Good perennial groundcover provides substantial resilience to the impacts of drought, enabling production to continue for longer and recover more quickly after dry times.
  • TGP fencing: approximately $4000/km.
    The McMurtries have erected approximately 60 km of TGP fencing. Some of these costs have been partly subsidised by works undertaken in partnership with the Western CMA.
  • TGP trap yards: average $7000 each.
    These have been constructed at ten waterpoints, involving full TGP fencing around the ground tank, trap gates, yard and ramp.
  • Water-spreading banks: Total of $12,000, averaging around $950/km or $85/ha.
    The length of banks varies depending on the landscape. Construction across two paddocks of 140 hectare total was 12.6 km.
  • Troughing: $950 per pump, $300 per tank for fittings, $800 per trough, $1100/km for 50 mm polypipe.
  • Land clearing: Depends on INS density and property location. Up to $150/ha, if contracted.
    Ashley has cleared some land himself at a third of this cost.
  • Machinery: $60,000 for purchase and equipping of machinery to implement changes, including a front end loader and TGP fencing equipment.

The training the McMurtries have participated in has largely been undertaken with the financial assistance of various government entities. The major costs to Ashley and Carolyn have been in regards to time. Ashley has found that accessing expert advice along the way has helped to avoid costly mistakes.

If starting again, Ashley notes that they would spend finances differently, focusing firstly on those factors that produce better results. For example, this would have included more strategic fencing, constructing broader scale perimeters first to reduce the per-hectare cost. 




Active decision making and innovation in management can restore the landscape towards its previously productive and resilient state.

The management practices applied on Gilgunnia have transformed the property from a district average situation of declining natural resources, trading terms and infrastructure into an enterprise with increasing productivity and a focus on higher value products. This has been because the McMurtries understand the effects that land management practices have on ecological function of landscapes and the integrity and productivity of native vegetation. This has resulted in a dual outcome: increasing economic resilience and increasing the capacity of the property as a whole to handle seasonally dry times and multi-year droughts.

Ashley disagrees that the landscape is ‘fragile’ as is often claimed. Instead, being long subjected to overgrazing and over-utilisation has left the landscape vulnerable to seasonal changes and climatic conditions. Ashley has demonstrated that active decision making and innovation in management can restore the landscape towards its previously productive and resilient state.

Effective management of TGP maintains groundcover, minimises soil loss, maximises rainfall capture and infiltration, protects the potential to grow forage and enables the managed grazing of wildlife and livestock to produce quality products. It is the combination of intensive TGP control and planned rotational grazing – allowing pasture the time to rest and recover – that has delivered such dramatic results on Gilgunnia.

Active management shows that what is often considered a ‘fragile’ landscape can be regenerated to profitable and resilient pastures.

Ashley notes that the primary ‘resilience’ he has achieved has been the security obtained by having one paddock he can always rely on. Initially this was the first trial paddock, and now more of the intensively managed paddocks as they are developed. Pasture biomass can be banked for future use. Having a few smaller but more reliable areas of pasture provides the opportunity for weaning or fattening stock and offers some resilience to changing conditions. As these areas increase in size it should allow for a considerable increase in stocking rate and even greater flexibility in dealing with varying conditions.

Ashley believes that developing a proportion of any property as an intensive grazing area should provide positive economic and environmental outcomes from a small beginning, especially when developed in conjunction with larger TGP control paddocks.


Management practices on Gilgunnia have enabled the land’s carrying capacity to be increased significantly.

The property is no longer dependent on the vagaries of the feral goat meat market for survival. Today Gilgunnia is producing high quality Dorper ram replacements and fat lambs with a premium value. To the future, options exist for agistment-based enterprises in the extensively managed component of the property as well as the potential for ecotourism through birdwatchers seeking to spot uncommon species.

Gilgunnia now offers an alternative enterprise model to the district average that is less dependent on season-to-season variation and has inbuilt feed reserves as buffers for dry times. Ashley has observed that stock can be maintained in a healthier condition due to the higher abundance of palatable perennial grasses.

Planning and management is now much easier as feed usage can be budgeted, confident that spelled country will not be grazed out by feral goats and kangaroos in the absence of domestic stock.

The improved carrying capacity on Gilgunnia provides clear evidence of the production benefits of building a diverse and healthy landscape. Ashley and Carolyn have achieved a four-fold increase in productivity, running 900 DSE on 2000 hectares of their property, in comparison to the initial assessment by LHPA of a 1400 DSE carrying capacity on the then 13,000 hectares (ie, 2.2ha/DSE compared with 9.3DSE/ha).

Using the trap yards to capture the feral goats is very efficient. After the initial investment they only require a small amount of money and time to maintain. Depending on the market, goats can bring between $0.70 and $1.00 per kilogram. The density of rangeland goats varies quite widely throughout the Western Division. Local knowledge and a reasonably accurate estimate of the goat density should allow other farmers to discern whether or not this method is suitable for use as a funding source for property development.

Key to the value of the trapping performed on Gilgunnia is that it is used as an income stream to re-invest into the property to ultimately remove the goat population through TGP fencing and replace the grazing pressure with higher value Dorper stock. Commonly seen as a ‘free’ resource in the region, the challenge with feral goats is that the ongoing damage they cause to the natural resource base is rarely acknowledged or calculated.



A significant increase in biomass has been produced as a result of the management practices on Gilgunnia.

The change in pasture management is most evident in the intensively grazed system, through the capacity to spell areas for significant periods then stock intensively to a trigger point determined by the level of utilisation of key perennial species. Improved groundcover and perennial species resulting from control of TGP and planned rotational grazing have significantly improved landscape stability and capacity to generate pasture growth.

No vegetation has been sown or planted on the property, and all regrowth is a result of natural seed banks contained within the soil. Desirable species regenerating include red-leg grass, hairy panic (Panicum effusum), cane panic (Panicum subxerophilum), finger panic grass (Digitarias coenicola), curly umbrella grass (Digitaria hystichoides), wallaby grass (Austrodanthonia spp.) and Minnie Daisy (Minuria tridens).

DPI research validating the outcomes of the intensive system has now been presented to several natural resource management conferences and has been submitted to peer-reviewed journals 5Society for Ecological Restoration Rangeland Conference Kununurra WA 2012; 5th World Conference on Ecological Restoration, Wisconsin USA 2013. In comparison to average district management of areas with open continuous access by unmanaged grazers plus domestic stock, the study showed the intensively-managed system has:

Far more groundcover and less bare ground was evidenced on Gilgunnia in comparison to a nearby property using standard regional practice

The drainage flat areas that formerly supported less than 5% groundcover (including leaf litter) and 125 kg of biomass per hectare now support 70% groundcover and a yielded between four and five tonnes of biomass per hectare prior to grazing in April 2014.

These results have been achieved during a period when seasonal conditions have been adverse and stocking numbers have been increased.

The ability to manage access to water through the construction of trap yards has also contributed to improved vegetation condition in the extensive grazing system. However, improvements within the extensive system have been slower since the control of unmanaged grazers is less effective. Gradual development of TGP fencing will improve this control.


Substantially more organic matter is visible in the soil of the intensively managed paddocks, improving rainfall infiltration and retention.

Maintaining high levels of groundcover has resulted in obvious improvements in soil characteristics especially on the broad drainage flats throughout the intensively managed system. This has been validated by DPI investigations. Core samples revealed perennial grass root systems penetrating to a depth of more than 1.2 metres.

Higher levels of groundcover and resultant organic matter in the soil brings a substantial improvement to rainfall infiltration and retention. Now light rainfalls, which previously would have evaporated or failed to penetrate the bare soil, are able to be captured where they land. Even during drought small, scattered showers are received, and the ability for plants to make use of this moisture greatly assists their resilience and capacity to survive in these times.

Improved infiltration across the property has now reduced runoff to the point that less water is being collected from surface flows into ground tanks. As the remaining 8000 hectares of Gilgunnia are regenerated, this will have to be monitored carefully to ensure that sufficient ongoing stock water supplies will be available.



Land management innovations on Gilgunnia have resulted in a healthier landscape with more biodiversity – which delivers increased resilience. The grazing system has demonstrated a substantial shift in native pasture species composition and the re-establishment of grassland biota, especially in relation to birdlife. In areas where invasive native scrub management has resulted in more open landscapes and improved grassland habitat, the grasslands have attracted a range of seed-eating species such as quail. Concurrently there is a change in the balance of predatory species with a notable increase in the abundance of small raptors. The return of top level predators is seen as an indication of improving biodiversity. Thick shrubby landscapes appear to favour stealth based predators such as foxes, whereas the more open grassy areas are known to carry a much higher biomass providing habitat for small ground dwelling animals including insects, arthropods, reptiles and mammals and a hence increased diversity for foraging raptors.

A recent survey identified eight species of raptor within the intensively managed area, including sightings of the endangered grey falcon. There is evidence of two pairs of these rare falcons on the property. These raptors were absent prior to improved grazing management. DPI has contracted a formal biodiversity survey in late 2014 to examine these changes.


Ashley McMurtrie is deservedly proud of the increasing plant diversity growing in his intensively managed paddocks.

On the personal front, the McMurtrie family has gained much through the learning and property development process they have undertaken over the last decade.

They now have a greater understanding of the ecological function of landscapes and how land management practices can be used to improve the integrity and productivity of the native vegetation. This understanding has given them greater confidence in decision making as outcomes are more predictable.

They have developed a solid network of innovative natural resource management professionals and are easily able to access knowledge, education and greater experience. These lasting friendships with like-minded people support free information sharing. Ashley and Carolyn have an open policy on information and access to their improvements in order to expand the community understanding of rangeland management systems and options.

Overall, Gilgunnia is now a more enduring and successful local business. The family experiences more stability and less stress as the business is more reliable – and there are only further improvements to come.


Ashley and Carolyn McMurtrie moved into the Western Division with no pre-conceived ideas on how their property should be managed. This perhaps, gave them the unfettered opportunity to investigate best-practice in landscape management.

What they learnt along the way was that what was best for production was also best for environmental regeneration – and building a landscape that is resilient in the face of seasonal and multi-year droughts and other climatic extremes.

Now the McMurtries provide a case study of what can be achieved in the highly variable environmental conditions of the Western Division, hopefully for others to now learn from and follow.

In Ashley’s words:

The process we have undertaken over the last nine years has taken our business from a struggling opportunistic feral goat harvesting business that was completely exposed to seasonal conditions to a business that is far more resilient.

We have now developed and continue to expand a dual system business with high value stock that is dynamic in seasonal conditions, and is continuing to develop under its own financial success, with documented increases in groundcover, biodiversity and biomass. This has occurred during a period in which we had only 2 years of average or above rainfall. The majority of profit each year is directly put back into expanding these systems and will be for the next 5-7 years in order to create TGP control over the entire property. Without the development and success of this model we would have remained in a financially static position, with no domestic stock and still completely exposed to seasonal rainfall variation.






Initially inspired to perform a trial of new management practices to better manage received rainfall, Charlie and Anne Maslin ended up following their instincts – fully changing focus from their animals to the land – and they have never looked back.



Download print-friendly version


20 km north-west of Bombala, NSW Southern Tablelands

ENTERPRISE: Cattle, sheep, goats. Angus beef, sheep and goat meat production; medium wool Merinos

PROPERTY SIZE: 4200 hectares


ELEVATION: 800-1000 m


  • Ecological deterioration and dependence on rainfall for profit


  • Constructing leaky weirs across creeks and gullies
  • Time-controlled rotational grazing matching stock numbers to land carrying capacity
  • Introducing goats for weed control
  • Innovations commenced: 1995


  • Increased profit stability – even with decreased rainfall
  • Labour inputs reduced by 40%, providing increased time to pursue other activities
  • Healing erosion gullies
  • Greater water retention in pastures
  • Flexible stock management


Upon assuming management of Gunningrah in 1987, Charlie Maslin observed significant annual variations in rainfall and profit. Examination later revealed the significant impact of rainfall on the cost of production. Additionally, a mid-1990s comparative pasture analysis undertaken by an external agency revealed alarming outcomes in terms of actual ground cover available for stock feed.

Charlie realised that while you cannot change how much rain falls, you can change how you manage the rain you are lucky enough to receive. By changing their mindset to focus on the health of the land, the Maslins found themselves managing poorer years more effectively and not over-using resources in abundant years. Maximising the retention of available rainfall and striving for much improved ground cover has in turn delivered more consistent profits on reduced inputs. In addition, erosion is being controlled, weed invasion has reduced, stock are healthier and management is more flexible.

Charlie sums up their new approach, “Rather than us dictating to the land what stock it has to carry, we try to evaluate what the land has to offer and then attempt to stock it accordingly – and hopefully learn as we go”.



image of Gunningrah landscape
The Gunningrah landscape.

The Maslin family have managed Gunningrah for 100 years. A property of 4200 hectares, it is located at the southern end of the Monaro Tablelands of south-eastern New South Wales. Currently, 3700 hectares of the property is grazed with cattle, sheep and goats.

Native grasslands make up approximately 60% per cent of the farm area. In the other 40% per cent, which had been pasture improved, introduced species of grasses coexist with the native grasses, in some cases the introduced dominate, in others, the natives.

Approximately 20% of the property has scattered remnant to heavier tree cover, mostly on the sedimentary soils adjacent to the Meriangah Nature Reserve, located along the western boundary. Soils are approximately 75% derived from basalt, 20% sedimentary rock and 5% granite.



Measuring and documenting the important variables was essential to our change process…

After managing the property for almost a decade, Charlie realised that Gunningrah was gradually facing ecological deterioration and profitability was becoming increasingly variable. Two main factors provided the initial impetus for change.

Firstly, a Meat and Livestock Australia trial conducted on the property in the mid 1990s revealed some alarming results. Whilst the property appeared to have sufficient pastures to support stock grazing, actual ground cover levels measured were substantially below perceived coverage. The agricultural assessment of ground cover showed approximately 30% bare ground. This was seen as unsatisfactory.

Secondly, the impact of the varying annual rainfall on the cost of production also presented a stark reality. Charlie reports, “Comparative analysis of inputs showed wool production costs could double, varying from $2.50 to $5.00 a kilogram, and beef more than triple, ranging from $0.40 to $1.40 a kilogram”. These variations were largely dependent on the rainfall received, accounting for supplementary feeding or agistment costs when existing pastures were insufficient.

A neighbouring property to Gunningrah holds continuous rainfall data from 1858 and Charlie accessed this to try to obtain a better understanding rainfall in the region. However, little evidence of rainfall patterns or consistency over months or years was found. Charlie notes, “The only recurring theme appeared to be that for every year of above-average rainfall, there were two years below average”.

This information made it clear to the Maslins that effective management of inconsistent rainfall was a key factor in maintaining profitability.

image of regenerating erosion gully
Capturing sediment through establishing weirs has helped to fill erosion gullies.

Learning about the principles of Natural Sequence Farming, the Maslins identified an opportunity to make the most of the rainfall they received. They found that through this technique the health of watercourses could be significantly restored by slowing the rate of water flow, especially after rain, by a series of physical interventions in the landscape. These would enable the capture of sediment to help repair eroded watercourses, also holding nutrients to improve soil health and feed plant roots. As a result, water would be captured in the soil for longer, better supporting vegetation regeneration and continued pasture growth. This process would also aid in reconnecting streams to natural floodplains and wetlands, reforming the chain of ponds that used to dominate the landscape.

The Maslins also learnt about stock rotation from others in the region and through attending grazing courses, such as Grazing for Profit. The cell grazing method they chose to adopt is based on the observations and trials of Allan Savory and Terry McCosker. This technique involves dividing the land in some cases into an increased number of smaller paddocks which then are intensively grazed for short periods followed by sufficient recovery periods to allow pasture to regenerate.

Applying the principles required a detailed understanding of pasture management, particularly the ability to accurately assess pasture growth, recovery rates and their differences site by site across the property.

After around six months of deliberation on changing their management methods, the Maslins initially decided to trial the new practices on 20% of their property. However, taking the opportunity to capitalise on an above average rainfall event, they ended up following their instincts that the technique would work, and instead committed to implement across 100% of the property.

Changes to infrastructure were made incrementally, to allow for the learning process. An extensive capital outlay was needed in water reticulation as the water cycle slowed down and dams could not be relied upon. Additional expenditure was required for fencing and other necessary structural changes. Whilst these new capital costs were significant, they did not restrict implementation of the new methods.

Overall, the new business plan for Gunningrah comprised specific aims for managing the land to support production outcomes, focusing on water management and cell grazing methods to improve stock and soil health, vegetation, pasture, and weed control. Indicators were developed to monitor progress in these areas. “Measuring and documenting the important variables was essential to our change process,” says Charlie, “we regularly took photos from strategic points so that changes could be monitored and evaluated”. Though substantial records were kept, Charlie indicates that he would capture even more data and keep better track of changes if he were to undertake the change process again.



Annual rainfall on Gunningrah averages 550mm and has varied from 250mm to 1000mm over the past 100 years. The main source of water inflow to the property is the Cambalong Creek, which rises around 15km to the north. It flows though the property for 16km, and then 10km downstream flows into the Bombala, Delegate and Snowy Rivers. Three smaller streams also flow into the farm.

In the past, three of the four streams were permanent, however, over the last two decades all have been intermittent at various times.

Ninety per cent of runoff from Gunningrah land flows down the Cambalong Creek, the remaining 10% flows to the west to the Maclaughlin River.

image of pipe outlet of leaky weir
Leaky weirs slow the flow of water courses (note pipe).

Prior to the introduction of grazing to the region, the valley floors were resilient, with substantial wetlands along the main creeks and streams. Charlie indicates points across the landscape, “There is clear evidence of many earlier chains of ponds, on convex valley floors – the result of silt build up where water would slowly flow through the landscape. However, due to many years of traditional grazing methods and stock damage along water courses, the streams became incised and the surrounding land, which was once wet, became dry”. Dams and existing water courses were long relied on for watering stock, which had continual access.

To reduce dependency on rainfall for profit, the Maslins adopted three main approaches to more effectively use rainfall and manage water flowing through the landscape. These incorporated the construction of leaky weirs, changing from set stocking to cell grazing and fencing off the most degraded stream corridors.

Charlie explains, “Leaky weirs serve to slow down runoff through water courses, converting intermittent torrents into constant gently flowing streams. Trapped by the weirs, sediment is deposited, reducing erosion and consequently downstream water quality is improved”.

images of weir construction and regeneration
Weir construction (2006) and regeneration (2008) in erosion gully.

Since the mid 1990s, the Maslins have constructed over 30 weirs across Gunningrah streambeds and gullies. Charlie points out, “The weirs vary in size and have been constructed with excavators, tractors, and in some instances by hand with whatever resources were available, such as old fencing materials”. The construction of two major weirs in the late 1990s cost $2500, however, since that time only $200-$400 has been spent per weir on most of the remaining structures. The Southern Rivers Catchment Management Authority (CMA) has viewed the water management practices applied.

With the introduction of rotational cell grazing and by fencing off selected riparian areas, water courses are now only exposed to animal activity for short periods of time, or not at all. This protects banks from damage and further allows sediment build up. Vegetation has been given time to rest and a chance to germinate in the riparian areas. As a result there have been vast changes to bank stability, also providing much greater ability to handle high flood flows.

Application of these approaches has had significant impacts on riparian areas. Whilst in some areas it has taken 10 to 15 years for water courses to heal, other areas showed dramatic improvement in just two years. Charlie notes, “There is abundant evidence of silt deposition in streams with weirs. An estimated 50 tonnes collected in one weir in the first three years after it was built, significantly filling eroded areas. Downstream, a neighbour was puzzled to see a ‘clear flood’ after rainfall, as opposed to the usual silty runoff”. This was a result of the sediment remaining trapped in the weirs, rather than flowing off the landscape.

image of sediment build up in gully
Evidence of silt build-up upstream of an established weir.

“In one small stream, a one-off flood filled weirs, and the usual one to two day flow lasted six weeks at 10,000 litres a day. Another larger stream flowed for 12 weeks. This slowing of the water is now a consistent feature on the property.” Charlie now has greater access to water for longer, retains more of his soil on his property and his neighbours enjoy the benefits of quality water runoff from Gunningrah.

Vegetation coverage has also improved as a result of the increased water in the landscape, as well as through the cell grazing methods. Growing periods have extended as the water is now held in the pasture for longer, rather than running off straight into the dams, which are no longer a reliable storage for rainfall capture.

Establishment of cell grazing and reduced dam water did also necessitate other changes to water management, with water provision one of the main logistical issues with having mobs of stock in multiple paddocks. The Maslins constructed additional water points in paddocks without other water courses. All troughs are gravity-fed, so no fuel is required for pumping. Charlie points out, “While costly, establishing the troughing system is ultimately much more water efficient than dams. There is now less evaporation, wastage, land damage, and the stock have access to cleaner water”.



Focusing on the land rather than animals does not reduce the importance of the stock on Gunningrah. Instead, the health of the land and the natural resource base is better understood as the source of profit rather than the animals. The animals still have a very important role to play in maintaining the health of the land.

“We believed that grazing could be profitable and sustainable by shifting the focus from maintaining a set level of stocking to varying the stocking level according to the productive potential of the pasture.”

Charlie recalls previous management methods, “Gunningrah was traditionally set stocked with around 75% sheep and 25% cattle. Creeks and dams provided watering points and feed was trucked in during lean years. Rainfall may have varied by 60%, yet stocking by only 30%”.

The rotational grazing program was identified as a tool to deliver a number of benefits to Gunningrah. Using this method would help to increase ground cover levels, from a then base of around 70%, ensuring a continual feed supply. This would also help to generate healthy soils by increasing the organic component of the soil and subsequently enhance rainfall infiltration to maintain water in the landscape.

image of cattle grazing
Stock is grazed at a high density for short periods of time as per the determined carrying capacity.

The program would also improve the composition of the pastures from a quite high annual species base, to a predominantly perennial base and reduce weeds. As a result, animal health would improve through more diverse species to graze and the pasture worm burden would be reduced through the spelling of pastures. Additionally, labour efficiencies would be gained through less manual inputs to production operations.

Charlie describes their method, “We chose to match our stock numbers with the carrying capacity of the land, using a formula to determine a stocking bandwidth within which we try to operate”.

The formula involves calibrating the relationship between available feed and stock numbers. Rainfall and stock numbers are measured monthly to evaluate stock pressure. Computer software is used to continually monitor the carrying capacity of the property and adjust stocking rates of a mix of sheep, cattle and goats to ensure profitability. The Maslins use a formula of DSE* days per hectare per 100mm of rain to determine the carry capacity of their land.

graph showing DSE days per hectare per 100mm rainfall

To implement the rotational grazing system, stock were combined into larger herds. This presented a logistical challenge and used all the available infrastructure at the time. Charlie notes, “Refinements were made to overcome problems as they arose, as we continue to do today”. Paddocks of approximately 100 hectares were established. Each paddock is intensively grazed for five to seven days, with approximately 10% of land stocked and 90% rested at any one time. In winter this is varied to accommodate requirements with available pasture, with approximately 40% of land stocked and 60% rested.

Charlie speaks positively of the greater flexibility they have experienced in terms of managing their land and animal requirements as a result of adopting rotational cell grazing. This includes the ability to:

  • ‘finish’ stock better, for example, by fattening lambs on best paddock prior to sale;
  • prioritise stock for best feed, such as for breeding ewes at joining or twin bearers at lambing;
  • adjust rotation times to account for season growth or animal requirements, such as lambing;
  • skip paddock rotation for recovery or if different terrain has inherently different recovery rates;
  • target certain paddocks to reduce risk of fire or provide greater recovery time; and
  • achieve early identification of when feed is getting low and allow selective reduction of stock numbers.
image of sheep
Stock health and ease of handling has improved on Gunningrah.

Stock management is much more informed when numbers are tied to carrying capacity. The Maslins are now better able to manage their stock rates according to the seasons and the resources available in poor or abundant years. Charlie points out, “Stock rotation provides an early warning system of land recovery. If the pasture in the first paddocks is not fully recovered after a rotation cycle has been completed, an informed decision can be made on stocking rates. With set stocking, it was only when stock condition started to deteriorate that pasture problems were identified” .

Other benefits the Maslins have experienced include improvements in stock health. “The worm burden has been substantially reduced by the continual stock movement. Animals are now only drenched once or twice annually, as opposed to four times a year previously. Twin lambing pregnancies are 20% higher than two decades ago and stock classing is more consistent.”

In terms of inputs, larger mobs enable more efficient management. Movement, drenching and stock checks now require less human input. Stock are becoming easier to handle with more even temperaments due to greater human exposure.



Grass diversity, particularly native species, increased quite quickly after establishment of cell grazing.

Vegetation improvement was an inherent outcome of the Maslin’s new water and stock management programs. This directly addressed Charlie’s initial concern at the results of the Meat and Livestock Australia assessment of ground cover.

Providing all plants with adequate rest to grow well, establish deep roots, to keep in a vegetative state, and to be able seed, is the essence of the stock rotation theory.

As a result of the new practices, the ground cover improved from 70% to around 85% in the first five years. In 2011 some areas had close to 100% ground cover. Native pastures have increased substantially.

Charlie says, “Our aim is to maintain 90% ground cover 90% of the time with as much plant diversity as possible. 100% would be the ideal but with the vagaries of climate this goal is unattainable for the long term, so we are content with the average 85-90% coverage that tends to be the plateau”.

image of young trees
The Maslins have undertaken broad planting of tree species found to thrive in the region.

The changes to grazing practices at Gunningrah have also benefited the soil in a number of ways. Most importantly, managing stocking to ensure close to complete vegetation cover at all times prevents or minimises erosion by wind and runoff. At the same time, vegetation cover ensures that rainfall infiltrates, and coupled with the leaky weirs, the water cycle has slowed, minimising runoff and reducing or halting sheet and gully erosion. The increased plant biomass also leads to increased soil organic content, which improves water holding ability and nutrient cycling. Reducing chemical use has also enhanced the soil health.

The grazing changes and increased ground cover have also assisted in reducing weed invasion.

Gunningrah previously suffered from a range of dominant invasive weeds, including serrated tussock (Nassella trichotoma), scotch (Onopordum acanthium) and nodding thistle (Carduus nutans), horehound (Marrubium vulgare), Bathurst burr (Xanthium spinosum), sweet briar (Rosa rubiginosa), and saffron (Carthamus lanatus), black (Cirsium vulgare) and variegated (Silybum marianum) thistles. Fireweed (Senecio madagascariensis), love grass (Eragrostis curvula) and Chilean needle grass (Nassella neesiana) were seen as having the potential to be problematic in the future.

image of goats
Goats provide weed control and complementary meat production.

However, with the increased ground cover and competition, weed problems have declined. This was especially observed with serrated tussock. Attending a field day to see the use of goats for weed control also provided insight to the Maslins, “We saw goats as an opportunity to reduce labour and the use of chemicals on the property.” Understanding the different grazing preference of goats for weeds such as briars and thistles rather than pasture highlighted the possibility of a complementary enterprise which now comprises approximately 10% of stock. The Maslins happily report, “Goats are strategically grazed to address specific weed problem areas and have now almost completely suppressed the briars and have had a strong impact on thistles, to the point that spraying is rarely required”. By selecting a mixed breed to maximise meat production as well as weed control, extra income has also been achieved through the sale of kids.

The Maslins have undertaken broad tree planting activities, supported by Landcare. Paddock trees have also been replaced and replanted in main watercourse area with fast-growing species found to thrive in the region as advised by a neighbouring tree nursery, not just with local species of eucalypt.



Get together with like-minded people to discuss plans, problem solve and dream – broaden the range of achievable outcomes.

The Maslins have found that grazing can be profitable and sustainable if pastures are maintained by matching stocking rates to carrying capacity.

Charlie describes the success of their innovations, “Gunningrah is only a moderate/conservative producer, so not necessarily comparative to high performers, however there is strong evidence of consistent profit increase with stock rotation methods despite lower rainfall”.

“Net farm income has been graphed against rainfall received for the period four years before we changed the grazing and then for 14 years since. While it is a crude measure, and there are a multitude of variables which affect the result, there appears to be an upward trend in profit, and a reduction in variability. There is one year which goes badly against this trend, when we kept cattle away on agistment for too long, but hopefully we learnt something.”

graph showing net farm income over time

“Human inputs have been greatly reduced, and labour efficiency has improved around 40 per cent since mobs have been put together. Larger mobs are easier to move, muster in and assess for fly strike or other activities. As labour comprises approximately 50 per cent of operating costs, these efficiencies are delivering substantial financial results.”

graph showing reduction in labour requirements

The land has been the ultimate winner with the changed methods on Gunningrah. Changes to water management and grazing practices made by the Maslins ultimately complemented the other, further enhancing outcomes in relation to water use efficiency, soil health and vegetation cover. Improvements to soil and water quality strongly support increased biodiversity. In addition to increases in pasture and birdlife diversity, platypus are regularly observed in the Cambalong Creek running through Gunningrah.

As an added bonus resulting from the changes they have adopted, the Maslins have also found that more time has now been freed to do other activities they enjoy; the extra family time in particular has been greatly appreciated.

Furthering their focus on the land they continue to seek learning opportunities to improve their production management. These have included Landcare group activities and projects on issues such as erosion control, shelter belts and connective corridors; holding and attending field days covering topics such as water and streams (run by Peter Andrews and the CMA) and grazing techniques (run by the CMA and small groups of interested farmers).

Charlie and Anne also dedicate some of this spare time to acting as a change agent in the community to support better land management practices. Charlie notes, “Farmers using different management tools are generally keen to share their experiences. Don’t be afraid to ring up and ask. There are many simple ways to conduct a trial on how you would like to change things with grazing or with water, which don’t involve much risk or cost, to reassure your thought process.”

And overall, he advises, “Get together with like-minded people to discuss plans, problem solve and dream – broaden the range of achievable outcomes.”