Download print-friendly version

Taking over the family farm can be challenging in itself, leaving a secure job in the public service, a young family and relatives watching over a farm that extends back generations, now that’s a challenge.

Through self education, independent thinking and the support of immediate family, John was able to turn Collingwood around to be the thriving black Angus cattle breeding property that it is today. A focus on soil through an integrated approach to managing physical, chemical and biological processes has seen Collingwood get the balance between soils, water, plants and animals just right.


Collingwood Farm, Coleraine VIC

ENTERPRISE: Cattle breeding

PROPERTY SIZE: 242 hectares


ELEVATION: 90-100 m


  • Opportunity to embrace biological farming to regenerate run down enterprise with potential for improved profit and farm landscape improvement.


  • Fencing of stock water and improved fencing along creek line
  • Stock medication (supplements added to water troughs)
  • Stock mineral supplement powders
  • Effective weed management
  • Consistently high levels of ground cover all year round
  • Improved extent of tree and shrub cover along the creek


  • Significant reduction in input costs
  • High level of consistency of cattle breeding
  • Rotational grazing of high quality pastures
  • Cash flow all year round
  • High level of personal satisfaction in outcomes achieved


History of the Kane family runs deep in Coleraine, Western Victoria. Since 1878 four generations have farmed this area. John and family made a tree change in 1996 to take over the farm from his uncles and thus began a journey of transformation.


Over a century of conventional farming practices had caused deep erosion gullies and a hardpan 200 mm below the soil surface. Through perseverance, education and a little ingenuity the ecological assessment for this farm leaves no doubt about the improvements and ongoing resilience of Collingwood.


Collingwood is productive and profitable, but it wasn’t always like that. Through an investment in soil health and the smart acquisition of some second hand machinery, the returns from this farm and the potential for future capital gain look promising.


The potential of Collingwood was evident but you had to look beyond the weeds and erosion gullies. A cursory look back then would never have foreseen what is evident today. If John had his time again, what would he change? “Nothing”


Download print-friendly version

Maddy Coleman grew up in the city, and her love of horses introduced her to agriculture. Years of experience working in diverse farming practice and ongoing training and education followed. Maddy has made changes to their initial Rothesay business model, proving that flexibility, formal and applied education and conversations with mentors are key factors in managing ongoing drought conditions.

Management changes on Rothesay include preserving ground cover using a different stocking model and fencing to allow rehabilitation of creeks and gullies. Maddy shares her experience in managing Rothesay using regenerative farming practices in this transition case study.


Rothesay, Blackville NSW

ENTERPRISE: Cattle trading

PROPERTY SIZE: 1,620 hectares




  • Drought


  • Regenerative agriculture
  • Maintaining a high level of ground cover
  • Optimising soil hydrology
  • Feed budgeting
  • Conservative stocking rates
  • Rotational grazing


  • Delivering cash flow in drought


Maddy and Malcolm Coleman (her father) purchased Rothesay in 2016. They added the adjoining Springfield block two years later and now the combined Rothesay property comprises 1,629 hectares. While Malcolm visits to help occasionally, Maddy makes all the day-to-day decisions about managing the farm.

Rothesay is located on the foothills and lower slopes of the Liverpool Ranges, in the catchment of the Mooki River. Omaleah Creek and Black Creek run through and join on the property. The creeks only flow intermittently, so water for stock is obtained from bores. The long-term average annual rainfall as recorded at Blackville (2 km south of the farm) is 691 mm, with summer dominant rainfall pattern.

Deep cracking clay soils found on Rothesay

Paddock sub-division

Subdividing paddocks cost-effectively; one new trough can water up to four or more paddocks depending how paddocks are set up. Electric tapes are used to separate paddocks as required. Turning off water to the trough when the cattle have been moved on removes the attraction for kangaroos, and therefore helps reduce grazing pressure.

Carefully planned grazing enables paddocks adjoining creek lines to be rested long enough for tree regeneration to become established. The build-up of vegetation then retards storm flows, prevents erosion and leads to increased infiltration of run-off into the water table.

Shallow level channels carry water from the gully and allow it to disperse across the paddocks where it can infiltrate, rehydrating the soil.

Ground cover on Rothesay after two drought years. Maintaining ground cover during a drought ensures that topsoil is protected and rain that falls is able to penetrate, meaning pastures will grow back rapidly.


While it is early in the story, indications are that Maddy Coleman is showing the way to considerably improve the resilience of her farm business.


Looking back, Maddy recognises that she made mistakes, but also knows they were learning experiences.


Download print-friendly version


This is a common story in the history of Queensland farming, but it’s an inspirational story too. It’s a story of persistence, resourcefulness and resilience, self-sufficiency, acute observation of nature, the adoption of practical and cost-effective innovations and resilience to droughts and floods due to the property’s conservative grazing system.

Soils For Life has chosen Glenelg as a case study because it presents strong arguments for conservative stocking, comprehensive ground cover, soil hydrology and available water, thus preserving soil and biodiversity. The result is a profitable and productive enterprise. Our study took place when Glenelg had been in drought for 6 years.


Glenelg, Mungallala QLD

ENTERPRISE: Sheep, cattle grazing

PROPERTY SIZE: 4,000 hectares




  • Need to reduce grazing pressure and improve pasture


  • Introduction of Buffel grass (Cenchrus ciliaris)
  • An exclusion fence
  • Commitment to permanent pasture cover


  • Management of kangaroos and wild dogs
  • Dramatically improved and sustainable pasture
  • Restored soil
  • No supplementary feeding for stock during drought
  • Reduction in desertification


This is hard country – prone to desertification – but the Chambers family saw that it could be profitable with some major changes, including the introduction of Buffel grass (Cenchrus ciliaris), an exclusion fence and a commitment to permanent pasture cover.

Glenelg is near Mungallala, in a semi-arid part of Australia with pastoral activities being the dominant land use. Most rain falls in the summer months. The main pre-1750 (pre-European) vegetation types were Poplar Box, False Sandalwood, Wilga and various acacias, notably Mulga, Bendee and Bowyakka. The property carries sheep and cattle, with kangaroos contributing to total grazing pressure.

In line with State Government extension advice at the time, large areas of Glenelg were cleared by pulling a chain between two bulldozers from 1978 to 1981, and again in 1989, to control regrowth and promote pasture growth. These practices helped make the property a viable grazing operation and can be compared with many other properties in similar landscapes in Queensland and New South Wales where “woody weeds” rendered much of the landscape only suitable for goats.

During the 1980s, poisoning by Pimelea (probably P. trichostachya – Flaxweed, Spiked Riceflower) led to the loss of cattle. The maintenance of good ground cover was found to control the problem. In the late 1980s, Buffel grass (Cenchrus ciliaris) became well established over much of the property. This is in line with existing pastoral practice across large areas of northern and arid Australia.

Between 2014 and 2017, the Chambers constructed an exclusion/predator proof fence around the property. Kangaroos were herded off the property before sealing the fence and the remaining population was controlled and maintained at a sustainable level. This has resulted in a dramatic reduction in total grazing pressure and improved maintenance of pasture cover. The parts of the fence across Mungallala Creek are hinged, such that the fence lies flat in floods and can be easily restored to vertical afterwards.

This is a story of persistence and resourcefulness of the Chambers family (Harry and later Graham and Jan) over five decades on Glenelg station, Mungallala. The property exhibits remarkable resilience to the current drought – even posting a profit in adverse circumstances.


In line with State Government extension advice at the time, large areas of Glenelg were cleared by pulling a chain between two bulldozers from 1978 to 1981, and again in 1989, to control regrowth and promote pasture growth.


This ecological assessment commences in 1970, when Harry Chambers purchased the first parcel of Glenelg.


The Chambers’ deliberate decision to maintain a consistent level of productivity through conservative stocking rates has translated into improved profitability despite poor seasonal conditions.


For Jan and Graham Chambers, 2019 is looking good, with the expectation of a bumper profit in this tax year.  



Bryan Ward’s property, Illawong, comprises 160 hectares and carries up to 140 beef cattle at any one time. While this is a relatively small property, it is perhaps typical of thousands of farms producing beef in Australia. There’s a trend to smaller holdings, many operated by people with little farming background.

But Bryan’s achievements over 24 years of managing Illawong provide valuable lessons for producers seeking to maintain production while also regenerating and improving the condition of the land. Watch a 1-minute summary of Bryan’s key practices and achievements here.


Bowna, NSW

ENTERPRISE: Grass-fed cattle finishing

PROPERTY SIZE: 160 hectares




  • Turning two paddocks of neglected hill country into a profitable, pasture rich operation


  • Contour ripping; direct drilling of eucalypts, acacias and understory species in fenced off remnant vegetation patches
  • Rehydrating the landscape
  • Removal of rabbits
  • Establishment of perennial pasture


  • Illawong cattle now consistently achieve amongst the highest level of compliance, earning Bryan an award from Meat and Livestock Australia for being one of the Top 100 producers in New South Wales.


Bryan found two paddocks of neglected hill country, a small part of a large sheep grazing property called Table Top Station located at Bowna, about 10 km north of Lake Hume and 20 km north-east of Albury. In late 1994, these run-down paddocks, comprising undulating slopes with clay loam soils rising to rocky granitic soils on steep slopes, became Illawong.

After decades of set stocking on annual pastures, Patterson’s curse, rabbits and gully erosion were prevalent on Illawong and the remaining woody vegetation comprised remnant red box, yellow box, red stringybark, Blakely’s red gum and long-leaf box trees. Average annual rainfall in the area is a respectable 650 mm, but that is little use if it falls on bare impenetrable soil and most of it rushes down the gullies, taking topsoil with it.

Carrying capacity was a low 1.5 DSE. This was the condition of the property when Bryan acquired it. 1996 was around the beginning of the ‘millennium drought’, which saw 10 years of severely below average rainfall across southern Australia.

When the drought set in, Bryan feared that massive soil erosion would ensue when the rain returned. He was keen to contour-rip so that when rain eventually came it would penetrate, rather than run off, be wasted and exacerbate the gully erosion. That work was assisted by a drought relief program subsidy available at the time from the Commonwealth Government through the Natural Heritage Trust. Today the contour ripping is indistinguishable, but the dams constantly have water because the rain that falls infiltrates and seeps in to the dams from the water table.

Over a ten-year period, the fencing was re-designed using electric fences so that rotational grazing could be introduced, rotating the stock around seven paddocks, leaving the pasture height at least 100 mm (1500 kg dry matter per hectare). Cattle spend 5 to 7 days in each paddock at a time, fewer in the unimproved pasture paddocks, at a stocking rate of 36 DSE/ha. This ensures that the cattle receive sufficient nutrition and provides time for pastures to recover.

Bryan buys Angus trade steers, selecting from producers whose stock he has found suitable for finishing on pasture. Three different genetic lines typically make up the annual herd. These arrive in spring at an average live weight of around 370 to 400 kg and leave by the following winter at around 630 kg live weight. The number of steers bought each year depends on seasonal conditions, ensuring that the pasture available at the time can sustain the grazing pressure.

Over 24 years of changing from sheep to cattle, introducing rotational grazing, establishing perennial pastures and improving stock shelter, productivity has increased from 1.5 DSE to 12–14 DSE. Cattle growth rates of over 2 kg live weight per day have been recorded in winter. Most importantly, the business can adjust to seasonal conditions so that pastures do not suffer from over-grazing in dry periods and there is no loss of soil capital.


The practices adopted by Bryan at Illawong are not ground breaking or revolutionary. It is simply common sense land management based on self-evident principles.


In 1995, Bryan developed a farm plan for Illawong by matching the establishment and development of pasture types to land capability classes.


Bryan has achieved the same level of productivity and efficiency on Illawong as other farming enterprises, with significantly larger footprints.


Bryan has transformed Illawong with great satisfaction and, the result he says is, “the pinnacle of total improvement of landscape, and restoration to its original state”. 


Download print-friendly version


This is the story of an historic farm which almost failed. It’s a story which goes back 200 years, when the pasture at Brownlow Hill, just near Camden, supplied Sydney with milk.

A number of crises, including the deregulation of the dairy industry in the 1990’s and the threat of Coal Seam Gas exploration, forced Edgar and Lynne Downes to drastically review how they farmed.

This case study tracks the ecological, production and social changes on the property over the entire period.


Camden, NSW

ENTERPRISE: Dairying, beef cattle, lucerne cropping, Bio Banking

PROPERTY SIZE: 1,215 hectares




  • Deregulation of the dairy industry; possibility of Coal Seam Gas extraction; urban encroachment


  • Natural Sequence Farming; organic fertlisers for pastures including poultry manure, horse manure, sawdust, straw and urine on lucerne paddocks; pilot farm for Bio Banking; organic practices


  • Increased sustainable revenue from lucerne, beef, dairy, Bio Banking, and entertainment venue, and reduced costs due to cessation of all chemical use and regenerative practices


Brownlow Hill is one of Australia’s most significant early agricultural and settlement sites, providing opportunities for research into change and development over more than 200 years. It was the first dairy farm to serve the fledgling settlement of Sydney. Current ownership and occupation stems back almost 160 years. The whole property has been heritage listed and will never be developed for housing.

An early view of the cow pastures (Engraving by Arthur Willmore, National Library of Australia)

Soils For Life visited Brownlow Hill Estate several times during 2018, just as the widespread drought which affected New South Wales and Queensland tightened its grip. However, the river flats and alluvial woodland on the lower sections of the farm were proving resilient, as a result of the intensive integration of stable waste and organic fertlisers applied over 12 years.

From 1985 onwards, Edgar started to use poultry manure instead of synthetic fertilisers and also installed sub-surface drip irrigation. He reduced the cropping intensity and turned more land over to lucerne, both for the dairy herd and for sale as hay.

The deregulation of the milk market was a turning point. Edgar’s land also became subject to a Coal Seam Gas Exploration Licence, and the city of Sydney was encroaching.

Edgar adopted Natural Sequence Farming methods and started spreading a mixture of horse manure, sawdust, straw and urine on his paddocks. This was provided by a recycling business for free.

In a major development, the New South Wales Office of Environment and Heritage introduced BioBanking and Brownlow Hill became the pilot for this program. The rarity of remnant Cumberland Plain Woodland and the need for developers and the Government to offset destruction of this threatened ecological community has meant that Edgar’s least productive agricultural land has become his most valuable asset.

Edgar’s changed management practices have meant that he no longer uses chemicals. He rotates his crops and renovates his pastures as needed and his cattle don’t require drenching or inoculations. His heifers and cows are naturally mated and his crops are resistant to mites, aphids and other pests. There is no salinity evident in either the river water or the soil, and his cows don’t bloat, even when consuming wet lucerne, clover or summer forage. With these regenerative practices, Edgar is able to sustainably farm Brownlow Hill and continue his family tradition.


Brownlow Hill is one of Australia’s most significant early agricultural and settlement sites, providing opportunities for research into change and development over more than 200 years.

Watercolour by Conrad Martens, 1836 National Library of Australia


This ecological assessment commences in 1973 when Edgar Downes returned to Brownlow Hill to run the property. Two examples of regenerative landscape management are found, corresponding to two very different land types; river flats and shale hills.


Dairy has been the mainstay of Brownlow Hill for over 100 years. There have been five dairies on the farm, and three still operate today.


Brownlow Hill’s production systems are based on two main land types found on the property – river flats characterised by deep alluvial soils and shale hills on the upper and lower slopes.


The current owners of Brownlow Hill, Edgar and Lynne Downes, are the fifth generation to call Brownlow Hill home. Their sense of responsibility and attachment to this property is strong. 


Download print-friendly version

This is the story of Jillamatong, a grazing property in the New South Wales Southern Tablelands with a history going back to 1951. In 1985, Martin Royds – the third-generation family member to manage Jillamatong – took over the running of the property. And he was forced to make big changes.


Southern Tablelands (near Braidwood NSW)

ENTERPRISE: Prime lamb, cattle, garlic, truffles, yabbies

PROPERTY SIZE: 457 hectares


ELEVATION: 650-750 m


  • Reducing input costs and increasing productivity (230% over 9 years)


  • Holistic management techniques
  • restored eroded areas
  • vastly improved water quality through development of chain of ponds
  • improved soil nutrients and soil carbon
  • sustained high levels of reproductive potential of pastures
  • the maintenance of consistently high levels of ground cover in summer and in winter.


  • significant reduction in costs
  • 230% profit between 2005 and 2014
  • satisfaction across all levels


A snapshot of Jillamatong’s history is relevant to the condition in which Martin inherited his land. From 1951 until 1985, when Martin began to take a more active role in the management of the Royds holdings, the property was stocked and rather degraded.

His grandfather had subdivided it into 12 paddocks and arranged for some applications of superphosphate to encourage the growth of seeded rye grass. There was no cropping – Jillamatong was only running sheep and cattle.


Martin Royds has instituted whole of farm changes, and these reports detail the striking results.

They include minimising the effects of climate – not just climate change, but droughts and wildfire. Martin’s regenerative practices also prevent erosion; restored eroded areas; maintained ecological health; the productive capacity of the farm and vastly improved water quality.

Ecological changes also include: soil nutrients and soil carbon; sustained high levels of reproductive potential of pastures and the maintenance of consistently high levels of ground cover in summer and in winter.


This report presents the outputs of a 10-year financial analysis of Jillamatong. It contains selected financial indicators, which are compared to industry benchmarks incorporating 146 farms across South Eastern Australia. The benchmarking provides long term averages across a range of financial and production criteria.

Among other outstanding results, it shows a significant reduction in costs, including supplementary feed costs for cattle at less than 10% of the average, and over 26% less than the highest cost of supplementary feeding. Estimated costs and profit per DSE also show a remarkable 230% profit between 2005 and 2014.

This report examines the EBITs (Earnings before interest and Tax) of Jillamatong over the 10 years between 2005 and 2014, and shows consistent profits, from just under $300,000 to an average of just over $120,000.


This report uses a number of productivity indicators and reveals that Martin Royd’s regenerative agriculture processes have reduced his costs incrementally. From a high of $1.90 per DSE in 2004/05, the indicators show that animal health expenses and pasture costs have gradually reduced, with allowance for dry years. Supplementary feed costs across the whole 10-year period are zero per DSE.

The indicators graphically explain some of the lower cost structures in the business. The grazing approach taken by Jillamatong has led to low pasture costs and the capacity to budget feed ahead, and adjust animal numbers accordingly.


There’s more to farming than profit and loss statements. This report presents the management team’s averaged response to questions completed on the social aspects of the business, using the On-Track Farm Family Business Indicators and questions from the Regional Wellbeing Survey.

In other words, it tells us how the people on the farm feel about their business, and how satisfied they are with the way they’re running their operations.

The results show satisfaction across all levels, with the highest scores related to the ability to try new things on the farm, the ability to be flexible, have clear expectations and social acceptance.





The innovative practices developed by John Dunnicliff and his family at Beetaloo Station provide, potentially, an efficient and sustainable method of cattle production applicable to vast areas of northern Australia – just by adding water.



Download print-friendly version


60 km east of Elliott, 800 km south of Darwin,
NT Barkly Tablelands

Brahman and Brahman-Senepol cross beef production

PROPERTY SIZE: 1,054,700 hectares




  • Previous experience that water supply is critical for productive grazing on vast properties


  • Delivering a reliable water supply to support grazing across vast areas of previously unused native rangelands
  • Establishing smaller paddocks on a very large scale to concentrate grazing animals to ensure managed use of pastures and continuing improvement of soils
  • Innovations commenced: 2002


  • Significant increase in carrying capacity – 100,000 head of cattle viewed as “conservative”
  • Development of an innovative vision for grazing in Northern Australia
  • Delivering time-controlled planned rotational grazing on a significant scale


When the Dunnicliff family acquired Beetaloo Station in 2002, it had been managed for the previous century in the traditional way. Much of the country was effectively virgin cattle country, having never really been grazed, while the areas near water had been seriously over-grazed and the pastures and soil were degraded. With experience running grazing properties in various regions of Australia, including the Kimberley region where water supply is an equally important issue, they could see the potential to significantly increase productivity while simultaneously rehabilitating the degraded landscape. The key was the provision of water.

Since taking over the properties, John Dunnicliff has embarked on a massive development program to provide stock water across vast areas of the properties. The scale is based on a model that cattle should not have to walk more than 2km for water. Full implementation of the plan could see production expand from the current carrying rate of 50,000 head of cattle to a potential target of 100,000, with an ultimate production cost of 32 cents per kilogram.

Advice was obtained along the way from tropical animal production expert Dr Steve Petty, who is based at Kununurra, and from holistic management experts, Terry McCosker and Allan Savory.



The Dunnicliff family has been farming in various parts of Australia, starting in northern New South Wales and including King Island and the Kimberley Region of far north-west Western Australia. In 2002, they acquired Beetaloo Station, which encompasses the perpetual pastoral leases of BeetalooOT Downs and Mungabroom.

Beetaloo Station extends over one million hectares

Beetaloo Station is vast. The total area of Beetaloo and OT Downs is 707,800 hectares and the Mungabroom property is 346,900 hectares. Combined, the total area is 1,054,700 hectares or 10,547 square kilometres. The distance from west to east is approximately 130km and from north to south about 120km – as the brolga flies. Approximately 50,000 cattle are currently run on the properties.

The climate in this region is monsoonal. Average annual rainfall ranges from 450mm in the south-east of the properties to 650mm in the north. However, nearly all of this falls in the wet season from November to March. Due to the hot climate, annual potential evaporation is about 2700mm. This means that, while rainfall is not particularly low, there is a substantial water availability deficit in the dry season.

Newcastle Creek runs through the Beetaloo property, providing a series of wet season waterholes and three large wetlands that rarely dry completely. The OT Downs property, part of the northern watershed of Newcastle Creek, also has some wet season waterholes and semi-permanent wetlands. The Mungabroom property has no permanent water, only temporary waterholes along the creeks after the wet season. Large volumes of good quality water are available from shallow aquifers underlying the entire area.

The dominant soil types across the property are heavy, hard-setting alluvial clays that have formed on the flood plains. Lateritic sandy soils and red earths are derived from sedimentary rock, such as sandstone and limestone, which underlies and projects above the alluvial plains.

Wetlands and waterholes support significant biodiversity

The natural vegetation includes open plains dominated by Mitchell grass (Astrebla spp.), which occur on the heavy clay soils. These plains are surrounded by and interspersed with woodlands and low open forests dominated by coolabah (Eucalyptus coolabah or Eucalyptus microtheca) and bauhinia (Bauhinia cunninghamii). The sandy soils and red earths support dense low forest of lancewood (Acacia shirleyi) with scattered eucalypts.

Water birds, including pelicans, ducks and brolgas, are prolific on the wetlands, temporary waterholes and earth tanks. Wedge-tail eagles, kites and other raptors are a common sight.

John and Trish Dunnicliff manage Beetaloo Station with the assistance of their daughter, Jane, and her husband, Scott Armstrong. The Dunnicliff and Armstrong families participate in a program with the Barkly Landcare Conservation Association, which has a project to investigate production from differing grazing techniques, and will contrast rotational grazing on Beetaloo with a nearby ‘control’ of the status quo management style, set stocking and with a biodiversity monitoring program run by the Northern Territory Department of Natural Resources, Environment, Arts and Sport.



When John purchased Beetaloo there were 40 bores and associated ‘turkey nest’ earth tanks scattered over the properties. John considers that “Less than 10% of the land area was effectively watered. Most of the country was in a relatively natural state, apart from areas affected by heavy stocking, surrounding most of the watering points. Large areas had never been grazed, due to lack of water. As a consequence, fires were a constant problem before each wet season”.

John’s observations of the grazing effect at increasing distance from water points (see images below) suggested that the realistic maximum effective grazing distance from water is less than 2km. Cattle no doubt go further from water to graze when pastures near the bore are depleted – some people argue up to 10km – but John believes that the constant travel to and fro would eliminate any benefit and they will work off any weight gain on the way. This observation has been substantiated by work done by the CSIRO.

Left to right: Pasture at watering point; 1km away; 2km away; and 3km away from watering point

There are other management problems associated with using vast paddocks, such as the inability to control grazing intensity, inability to force cattle to graze less palatable areas and the high cost and inefficiency of mustering.

Cattle on degraded land close to a watering point

The cumulative effect of this form of grazing management is gradually declining grazing value, as the accessible pasture becomes degraded, increasing vegetation and soil degradation and loss of habitat for native species.

John could see the grazing potential in extensive areas of native pastures which were being very inefficiently used. Drawing strongly on his previous experience in the Kimberly, he saw the opportunity to develop, “A large scale, naturally sustainable cattle operation that is simple to operate, economically viable, environmentally sustainable, productively utilises all the available grazing area and aims at being an industry leader in low cost beef production”.

Cattle now graze previously untouched pastures due to the
provision of water nearby

By developing a water supply and reducing paddock size to distribute grazing pressure across large areas previously inaccessible to cattle, John believed that he could relieve pressure from previously overgrazed areas and facilitate rotational grazing that would enhance soil fertility and pasture growth.

The solution was providing many additional water points to encourage the cattle to graze areas previously not accessed. Now about three quarters of the way through implementing this solution across the million hectare property, the evidence is becoming clear, and John says, “We are looking for an increase in perennial pastures, and opening up of previously unwatered, unutilised country is increasing carrying capacity dramatically. As a consequence stocking rates are being increased to utilise this capacity”.

Undoubtedly, the expense of developing the necessary water supply infrastructure was a major impediment. However, arguably the more problematic impediment was overcoming the traditional paradigm, that cattle production in the open rangelands of northern Australia is effectively based on practically uncontrolled grazing across vast areas. John notes that uncertainty and self doubt were a challenge to overcome in implementing innovative methods in the region. Advice received from Dr Steve Petty, Terry McCosker and Allan Savory assisted in reinforcing his plans and concepts.




Possibly the first mention of the Barkly Tablelands region by a European is by William Landsborough. Writing in 1860 while searching for the Burke and Wills expedition group, Landsborough, leader of the “Queensland Relief Expedition” described “… a plain with the richest soil, and with grasses of the most fattening nature, but which at this time are old and dry. This tableland I have named Barkly Plains, after His Excellency Sir Henry Barkly. ” 1Reference: Purdie, J., Materne, C., and Bubb, A. (2008) A field guide to the plants of the Barkly Region of the Northern Territory, Barkly Landcare and Conservation Association, Katherine, Northern Territory.
*Sir Henry Barkly was the then Governor of the colony of Victoria and president of the Royal Socieity of Victoria.

New grass shoots after burning

The lease was first settled by Harry Bathern (also known as Bullwaddy) at the turn of the 20th Century. When the Dunnicliff family took over the lease in 2002, the land had been managed for a century in the traditional ‘Top End’ manner with few infrastructure improvements and a reliance on seasonal watering points, a few bores and dams and whatever grassland was available within cattle walking distance to water. Landsborough’s comment that the grasses were “old and dry” has proved remarkably perceptive. It reveals a fundamental reality that is still relevant today: while the region has considerable potential for grazing, much of it is not being used. Pasture growth is prolific when there is ample rainfall. But nearly all of the rain falls in the few months of the wet season. This rapidly dissipates in the hot climate of the dry season. The pastures then go to seed and senesce, by which time they are of little use for fattening cattle.

There are only two ways to ensure that the grasses remain useful for grazing: animal impact or burning. The grasses regenerate readily after burning, but at the cost of loss of organic matter, soil biota and volatile nutrients. Frequent burning degrades the soil. Conversely, brief periods of high pressure grazing consumes or knocks down the pasture before it goes to seed and senesces. This maintains pasture in a vigorous growing condition.



Grazing in the vast expanses of northern Australia depends entirely on access to water. Cattle can travel only limited distances each day to reach water without loss of condition. While the landscape is extensive, very little of it is sufficiently close to water to be effectively used for stock grazing. The small number of (relatively) permanent water sources has been increased significantly since the realisation that there was a significant underground source of artesian water. While bores had been sunk by previous owners to access this water, by 2002 the distribution of bores was grossly insufficient to provide water to much of Beetaloo.

Water provision in traditional local grazing management was to pump bore water to open earth tanks then troughs, resulting in substantial evaporation

Traditional grazing management on the Barkly Tablelands was to drill a bore, from which water was pumped by windmill to an open earth tank and then to a trough. A large percentage of the water pumped evaporated, which meant that, where used, a large amount of the diesel fuel used was wasted.

Sparsely distributed bores typically led to serious over-grazing close to the bores and steadily decreasing grazing with increasing distance from the bores.

Over years of grazing, this leads to the elimination of the native perennial pasture species close to the bores and colonisation of annual species. The annual species have grazing value but do not persist for long through the growing period. This low-value ground cover steadily spreads out from the bores year after year. Immense areas too far from the bores are left unused – like the “old and dry” grasses noted by Landsborough in 1860. Perennial pasture species also die through stagnation.




Each bore supplies around nine tanks, and each tank supplies four paddocks.

To extend the use of land on Beetaloo Station, John’s basic strategy is to establish a network of bores to provide a reticulated water supply system. The previous paddocks that were scores of square kilometres can then be reduced in size. Building on his observation that the maximum effective distance that cattle can travel is less than 2km, the goal initially was to reduce paddock size to 4km by 4km (1600 hectares). Observing that it is still difficult to get grazing pressure high enough to use the pastures effectively at that paddock size, this is in the process of being reduced to 3.3km by 3.3km (1200 hectares). Consequently, as John points out, “This water development is being carried out in conjunction with an extensive fencing program”.

The necessary stockpile of fencing materials, water tanks and polypipe stretches to the horizon

A network of bores is being installed and connected with 75mm diameter pipe installed at a depth of 800mm running along the fence lines. Burying the pipe 800mm deep ensures it does not expand and contract with temperature changes, which could cause leaks to develop. A steel tank of 170,000 litres useable capacity or a plastic tank of 20,000 litres capacity is installed at each fence intersection. The tanks are filled from the bores by diesel pump. Windmills could not generate the pressure required for this and solar-powered systems are far too costly. Despite the long distances to travel to them, the pumps are manually operated because remote electronic switching systems have been found to be unreliable.

Concrete or steel troughs installed in the corner of each of the four nearby paddocks are filled from the tanks by gravity. Each bore supplies around nine tanks and each tank supplies four paddocks. The pipelines being linked in a grid arrangement means there is multiple back-up in the event that a bore fails. Similarly, having four troughs in each paddock provides a backup in case a tank is unserviceable.

Left: A diesel bore pump. Right: Water infrastructure now comprises a network of steel or plastic storage tanks, concrete or steel troughs and bores

One person is employed full-time during the dry season to maintain the bores, tanks and trough system, including refuelling, servicing and repairs.

Work place safety is a major concern in this remote region. As well as ensuring all staff attend safety briefings, providing safety equipment and ensuring appropriate signs are in place around the sheds and homestead area, staff at Beetaloo Station are trained in first-aid. Using a helicopter for travel around the property has the dual benefits of enabling faster travel for work purposes and providing a means of rapid evacuation of an injured person.



Developing the water supply is a massive investment. Each kilometre of laid pipe costs around $3000. Even with the most cost-effective methods, the bores, tanks, fencing and other costs incurred to develop each water point come to around $60,000. This seems a lot until the capital cost is divided by the number of cattle each unit of the investment can support, making it much more achievable.

Besides financial obstacles in obtaining capital, John has encountered other challenge in implementing his watering program across Beetaloo Station. He has experienced “resistance and scepticism from some members of the grazing community and industry bodies in relation to the changes”, and regularly battles the restrictions on availability and supply of resources due to isolation. John states that trial and error and working closely with suppliers has been essential to resolve various technical issues, such as tanks failing.

Regardless, John continues to fund the development incrementally, investing all outputs from production increases back into the watering program.


Experts indicate the targeted carrying capacity [of 100,000 head] is conservative.

John has sought to implement his changes using a holistic approach to livestock management with minimal chemical and artificial inputs. His fundamental focus is on soil, plant and animal health and animal welfare.

Providing many smaller paddocks with troughs in each corner has delivered many benefits. John notes, “By increasing the available watering points, and control of the cattle with associated fencing systems, pasture availability has increased dramatically. This has enabled the spelling of paddocks, to assist with the regeneration of plants, and in turn soil health”.

The pastures and soils are benefitting from the new grazing regime

Stock density can be increased to force cattle to graze a much higher proportion of the pasture than they would if left to roam much larger areas. The perennial pasture species are high value for grazing provided they are grazed early in the growing season. If they are not grazed early in the season they go to seed and soon lose nutritional value. Grazing each area in turn with a high stock density for a brief period – three days grazing with a mob of 6000 cattle units is the current aim – prevents loss of pasture value.

At the same time, heavy grazing for a short period, together with the trough location that distributes cattle movement to four points within each paddock, prevents overgrazing, which discourages regeneration of annual species, and reduces soil degradation. Most importantly, short periods of intensive grazing build up soil condition and encourage pasture growth in the long term by breaking down senescent vegetation and litter and adding dung.



John believes that with full infrastructure implemented across the property that he will be able to achieve a target carrying capacity of 100,000 cattle, and says, “Experts indicate the targeted carrying capacity is conservative”.

The planned carrying capacity with the current water infrastructure implementation is 75,000 cattle units, based on a 400kg animal; a breeding cow is 1.5 units and a mature bull 2.0 units. Herd bulls run permanently with the herd.

At that carrying rate, annual production is expected to be 25,000 cattle units. These are young bulls (maximum weight 350kg) grown for the Indonesian market and larger animals grown for other export markets. Bulls produced other than for this prime export line provide herd bulls for the local and Indonesian markets and for meat markets in the Philippines and the Middle East. Most heifers are retained for herd growth and replacement. Heifers not in calf at 24 months age and culled cows are also sold to the overseas meat markets. John is active in building relationships with his markets, travelling overseas and also receiving visitors to Beetaloo. This has given him confidence in regards to his animals’ welfare after export. His clients are also satisfied that they are receiving quality, grass-fed stock, meeting their needs and expectations.

Cattle are bred to cope well in the tropical environment and for resistance to ticks

The Brahman cattle have advantages in the hot climate, being resistant to ticks and tolerant of the heat. However, fertility is generally lower than for other breeds. Crossing the Brahmans with Senepol, a short-haired breed originating in Senegal, West Africa, and developed on the Caribbean Island of St. Croix specifically also to cope with a tropical environment, has been found to provide some resolution to this issue. In addition, John’s practice of culling ‘empty’ 24 month old heifers ensures that the breeding herd is gradually being selected for fertility.

Ticks are a common problem with cattle in the tropics and sub-tropics. Selecting tick-resistant cattle breeds helps, but does not eliminate the problem. Resting each paddock from grazing for long spells breaks the life cycle of the tick and therefore saves on other control treatments. This provides a further key benefit of the change from uncontrolled set stocking across large areas.



The experience on Beetaloo Station has demonstrated that cattle production can be significantly increased in northern Australia by providing adequate water supply to areas with grazing potential. There is also scope for the increasing carbon build-up in the restored soils to be achieved across vast tracts of land.

John knows that he is developing “…a well organised, productive, sustainable business operation that will benefit the whole environment and landscape, without any unnatural side effects. The changes being implemented have already been attracting attention from other graziers, advisors, industry bodies and NT Government”.

However, he advises, “The cost of infrastructure on the scale required is enormous. The sheer size of the lease limits the pace of change that can be achieved. Make haste slowly, because the costs of getting it wrong are huge”.

But this innovative approach also brings other opportunities. Beetaloo is too big for one family. The family’s vision for the property is to enable it eventually to be divided into a number of units, each of which can support an efficient family run business. This could ultimately be a model for efficient and sustainable cattle production applicable to the vast areas of northern Australia, which, as John says, “Is essential for the long term survival of the industry and its participants”.






Graham and Cathy Finlayson have used stock to convert claypans to pastures, significantly improving their carrying capacity, while diversifying into cattle trading and tourism to drought-proof their property, Bokhara Plains.



Download print-friendly version


35 km north of Brewarrina, NSW North West

ENTERPRISE:  Cattle, tourism. Beef cattle agistment and trading; accommodation and event venue

PROPERTY SIZE: 7200 hectares




  • Identifying the potential to improve the landscape and production


  • Using stock to break up claypan
  • Holistic Management techniques to regenerate the rangeland
  • Stock trading to balance stocking rate with pasture availability
  • Diversifying into tourism
  • Innovations commenced: 2001


  • Carrying capacity almost doubled to over 100 DSE days per hectare per 100mm rainfall
  • Revegetation of claypan landscape
  • Strong, positive community relationships


Disturbed surface and early claypan regeneration.

When Graham and Cathy acquired Bokhara Plains in 1999 they accepted that the property was run down. Ground tanks were bogging sheep every summer, they needed to cut scrub for fodder to keep sheep alive and large areas of the property were claypans. But they felt that things should be better than they were.

Graham and Cathy turned this belief into action after identifying potential in the claypans from observing new plant growth where the surface had been disturbed. Stock were eventually used to break up the claypans, allowing water to penetrate and seeds to germinate. Combined with Holistic Management techniques, the claypans are now being reverted to productive, pastured rangelands with an increasing carrying capacity. Further diversifying into cattle trading and tourism to ensure that they remain viable regardless of the rainfall, Graham and Cathy are well on the way to reaching the real potential of the NSW rangelands, and are providing a shining light for others to follow.



Bokhara Plains is located on the Goodooga road some 35km north of Brewarrina, NSW. The property has frontage on the Bokhara and Birrie Rivers, tributaries of the Barwon River and is part of the Murray Darling Basin and the Western Catchment Management Authority.

The property was traditionally farmed for wool production based on the sparse seasonal pasture growing on the flood plains of the two rivers.

When Cathy and Graham took over the property in 1999, about 50% of the area was claypan or otherwise bare ground. The claypans added nothing to the feed potential of the property. Even in good seasons, the land had struggled to maintain one of the lowest stocking rates in the district.

Graham realised that merinos were not profitable in this environment, and set stocking without matching numbers to carrying capacity was exacerbating ecological problems in the landscape. He explains, “We were almost totally reliant on my wife and I both working off farm to make ends meet. Continually running into dry periods and wishing / praying for rain was having a terrible emotional effect on my mental attitude, and a feeling of helplessness seemed to prevail”.

“I had read Allan Savory’s book on Holistic Management and realised that we could change the way we did things. One of two things drives fundamental change – pleasure or pain – and for me it was pain!”

Potential in the landscape was identified after the former owners carried out work on some of the claypans. A 400mm high bund was graded to form large shallow ponds. The theory of this method was that the water would soften the clay seal and allow seed to germinate.

The impact of ponding on the claypans was minimal but Graham noticed that there was significant growth on the edges of the claypans where the surface had been disturbed.

Graham states, “In 2001 the place was pretty well degraded and the whole ecological system had broken down. I felt that if we could restore the health of the rangeland that it could withstand drought… low rain in a healthy system could still be productive. It seemed to me that rangeland science was about understanding how the rangeland currently works, not about trying to change or improve it”.

Graham chose to build on the former owner’s ponding operations, initially by using their small Ferguson tractor to mimic the use of a larger grader, and then later using a mouldboard plough to break up the hard capped surface. At this point, he did not have the numbers of cattle that he needed to create the disturbance necessary, and recognised that using a small tractor, although relatively economical, was not nearly as efficient or effective as using cattle. Particularly someone else’s cattle.

Graham eventually identified that regeneration of the claypans and planned rotational grazing could allow the property to develop into productive rangeland with prolific native grasses and herbage suitable for cattle grazing. Agisting cattle allowed Graham to increase his numbers, which he then used to break up the surface of the claypans.

The results were significant, with earlier colonisers like copper burr (Sclerolaena spp.) responding quickly to the changed conditions, followed in due course by a variety of native grasses spreading over the bare surface.

Left: Grass seeds in disturbed claypan. Right: Regeneration of early coloniser, copper burr.



In achieving the potential they envisaged on Bokhara Plains Graham recognised that claypans were not a natural formation and could be restored to rangeland. Combined with Holistic Management principles, Graham determined that rangelands would respond positively to managed grazing practices, using livestock as partners.

After reading Allan Savory’s book, Graham undertook a RCS Grazing for Profit course followed by four years in the Executive Link program. “We also became inaugural participants in a program called Enterprise Based Conservation (EBC) through which we accessed some financial help to undertake a significant water and fencing project for much better control of grazing management.” This pilot program was run by WEST2000 Plus and included a five-year conservation agreement on land placed under voluntary conservation management.

Graham and Cathy also undertook major changes in their livestock enterprises, moving from sheep breeding to trading, then to agistment sheep to agistment cattle and now also cattle trading. They specialised in the larger herbivores from 2007 when they recognised that cattle were giving much better ecological and management benefits.

Graham follows three guiding principles for Bokhara Plains:

  • Match the stocking rate with the carrying capacity of the land.
  • Plants need adequate recovery.
  • Monitor what is going on across the property, make plans, then manage against these plans.



Pasture recovery before returning with livestock is paramount…

Graham and Cathy planned their infrastructure around their grazing strategies. The fencing forms a number of ‘wagon wheels’ with a watering point at the hub, producing a number of ‘cells’. For additional fencing to match stocking rates to carrying capacity, they rely on electric fencing supplied from an inverter connected to mains supply at the house.

Fencing was initially based on the original infrastructure but Graham has modified the layout to reflect his requirement that stock should preferably not travel more than 1.5km to access water. On Bokhara Plains fencing cost about $400 a kilometre for material and labour. Graham points out that the cost can be recovered in a year with increased production from the planned rotational grazing and Holistic Management strategies. Much of the labour for fencing was on-farm, comprising Graham, Cathy and their daughter, Harriett.


This image has an empty alt attribute; its file name is cs-bokhara031.jpg
Graham discussing his stock trading chart

Graham and Cathy plan their grazing on availability of pasture at any one time. Graham explains, “Agistment is the basis of our operations and we trade against the variation of available pasture. Pasture recovery before returning with livestock is paramount, along with creating the ‘beneficial impact’ described previously. We monitor pasture availability and plan and manage against that”.

The agistment runs at $/head/week basis for 6-12 months. Stock trading is used to balance the agistment with pasture availability. Stomach and skin parasites are not an issue in the region and stock are not drenched or treated for lice.

In their stock trading operations, Graham and Cathy use strategies developed by Bud Williams in the USA, and now taught by KLR Marketing in Australia. These are based on keeping the three inventories of price, available pasture and stock holding in balance. Using a ‘sell-buy’ process rather than a ‘buy-sell’ process, in the balanced inventory context, they can decide on selling and re-stocking options.

This image has an empty alt attribute; its file name is cs-bokhara041.jpg
Increased pasture availability has enabled a significant increase in stocking rates

Graham and Cathy use a 12 month rolling rainfall figure to calculate the stocking rate per hectare by month and annually per 100mm of rain. Using this method, they can reduce stock accordingly when conditions deteriorate and do not have to purchase feed. While they have de-stocked in earlier times, they are confident that they will not have to do so again.

Using these methods, stocking rates have increased exponentially on Bokhara Plains. Graham and Cathy have been measuring their stocking rate or DSE* days per hectare per 100mm of rain since 2002, and have seen their benchmark capacity lift from 56 DSE days per hectare to over 100.

Standing at a watering point where six paddock fences join, Graham points to a 60 hectare paddock with 1100 cattle spread throughout the tall grass, “That paddock would typically only carry about four head year round in a set-stocked operation”.



Plan as if there will be no rain, then adjust when it does arrive!

Graham acknowledges, “Water supply is the limiting factor for our grazing enterprise”.

Previously, Bokhara Plains had a very poor water cycle, with substantial runoff from the bare eroding soils. Livestock water was all supplied through open ground tanks, and the two river systems that transect Bokhara Plains, had a long history of set stocking.

Graham’s current sources are the two rivers and access to a bore. The rivers do not always flow, but when it is at high flow he stores water from the Bokhara River in a dam. Both rivers have now been fenced off to allow for strategic grazing. The old ground tanks have been blocked off or fenced in, and 35km of poly pipe has been laid to nine poly tanks and troughs. Water from the dam is pumped to stock watering points. The header tanks at the water points gravity feed to the troughs.

Graham structures his grazing plan around water availability and understands how much water is required on a daily basis per 1000 head of cattle. He works on his principle of, “Plan as if there will be no rain, then adjust when it does arrive!”

The waterpoints are the ‘hub’ for multiple paddocks in the wagon-wheel design. They are high-use areas when accessible (left), but the pasture can recover after rest (right)



This image has an empty alt attribute; its file name is cs-bokhara061.jpg
Improving the soil has enabled increased ground cover and nutrient cycling – visibly different to remnant claypan

The soils across Bokhara Plains, which have not yet been subject to soil testing, are varied. The country off the Bokhara and Birrie rivers comprises typical black soils, with lighter Mitchell grass (Astrebla spp.), Neverfail (Eragrostis setifolia), Queensland bluegrass (Dichanthium sericium) and bladder saltbush (Atriplex vesicaria) country interspersed with scalded claypans in between the rivers.

Claypans are a dense, compact, slowly permeable layer in the subsoil with a much higher clay content than the overlying material. The subsoil claypan layer becomes exposed when original topsoil is lost or degraded, exhibiting very different physical properties and behaviour. Claypans are usually hard when dry, and plastic and sticky when wet. They limit or slow the downward movement of water through the soil.

The techniques applied by Graham however, have enabled the bare ground to be converted to productive rangeland. The vastly increased ground cover has demonstrably increased overall soil biological activity, particularly the visible beneficial decomposing fungal activity in the soil, which regenerates healthy topsoils. Reducing paddock size and the successful grazing strategies are pointing towards potentially even higher stocking rates and therefore towards greater soil fertility as animals spread more dung and seed.



At acquisition, the Bokhara Plains was a dustbowl. Approximately 50% of the total land area was bare ground, and aerial photographs showed huge areas of claypan. However, there were reasonable patches of Mitchell grass and bladder saltbush in places. Besides providing some basic stock feed, this existing vegetation provided a seed bank.

This image has an empty alt attribute; its file name is cs-bokhara071.jpg
Vegetation diversity and coverage has significantly increased

The WEST2000 Plus Project on EBC, that predated the intervention of the CMA, was aimed at increasing ground cover. The project paid on percentage of ground cover achieved. Graham and Cathy had a personal target of 70%, although the EBC target was 40% which is recognised as a critical threshold point to stop wind and water erosion, and was measured in the most likely month for being dry – October. Graham and Cathy noticed that the areas of high-impact grazing recovered better and they could see that, over time, stocking rates could be increased. They amended their own target to “100% ground cover 100% of the time”, and although difficult to achieve, Graham believes it should be every land managers goal whatever the environment. It had become obvious to Graham and Cathy that grazing strategies had to be part of their vegetation management and enterprise-based conservation.

The planned rotational grazing practices have given young trees and shrubs respite from literally being ‘nipped in the bud’. Independent monitoring from the beginning of the EBC Project has shown a steady increase in the number of native trees, increased ground cover and the presence of perennial grasses.

They also noticed that the best gains came from improving good land and not necessarily from regenerating claypan. They therefore concentrated their efforts on the good land first.

Weeds were not previously a significant concern on Bokhara Plains, and now, besides small and decreasing outbreaks of Bathurst Burr (Xanthium spinosum), which they deal with by hand, there are no appreciable weed and pest issues on the property


Graham and Cathy are admirers of the Joel Salatin approach of many synergistic enterprises stemming from the one farm. Aligned with this approach they have a willingness to diversify with complementary enterprises. One such enterprise has seen the development of a tourism venture ‘Bokhara Hutz’, which they have grown over the last ten years into a reliable source of income, particularly through the four separate occasions when they have totally de-stocked the property.

This successful 30 person capacity farm stay business also provides a venue for local events, such as weddings and parties. Plans for the future include generating more farm produce, to be less reliant on off farm purchases.

Cathy notes, “Our diversification into tourism has allowed us to reach toward our goal of drought proofing our business”.



The infrastructure design and layout, the ready availability of water to stock, the rested and fresh pastures and the careful management of all farm operations combine for exemplary Holistic Management practices. This is a far cry from when Graham and Cathy took over six dusty paddocks and a flock of struggling sheep in 1999.

Graham summarises, “This has so far been a ten year learning process, which we expect to continue for some time yet. Installing infrastructure, etc., was implemented with some financial help through the EBC project involvement, however much of our innovation has been off the back of work done by many friends, colleagues and other people I’ve met while learning and studying all over the world [Nuffield Scholarship 2008], due to their desire and preparedness to share their own experiences”.

Our potential to improve our ecological resource, particularly in the semi-arid areas, is far greater than conventional rangeland science understands or accepts

Through intensive cattle grazing using agistment and trading to give flexibility in numbers, Graham and Cathy have revegetated and rejuvenated a much degraded landscape. “We have taken Bokhara Plains from a six paddock extensive layout with poor water security, to a 100 plus paddock planned cell system with fully reticulated and controlled water system. We have also diversified into tourism / accommodation, and have hosted many farming tour groups in our facility, Bokhara Hutz.”

Graham and Cathy’s original goal was to develop their property to be able to run around twice the original estimated 56 DSE days per hectares per 100mm of rainfall. They now see that the potential is much greater, perhaps up to three to four times that DSE rate, whilst continuing to build positive environmental outcomes. These increases are possible, due to the resilience in their pastures through increased diversity of their ground cover and improvements in soil health brought about by their grazing management. Their profitability is now based on a sell/buy approach, where the ups and downs of the markets are smoothed out. And to provide further surety, a careful balance between agistment operations and a trading herd is maintained.

Graham points out that the “economics stack up” – the potential for increased production on the property is better than investing in more property.

“Often people in the area believe that expanding their land holding is the only way to survive in the light country of the region”, states Graham. “A quick cost benefit analysis suggests that this is not the case at all. Enterprises of our size can prosper. At a rate of around $12 per acre to establish water points and fencing will allow intensive grazing approaches to be established, with immediate improvement in the quality of pastures, percentage of ground cover and health of the stock. These improvements come with no additional overheads, unlike purchasing additional land at upwards of $100 an acre and the associated taxes and other costs.”

He continues, “And, it’s all about flexibility. You can’t manage without people and animals. Smaller places are the answer, not more land. We should make the most of what rain we get and develop the land we have. We always plan for no rain. If there is a rain event, then we re-plan”.

However, Graham laments, “Our potential to improve our ecological resource, particularly in the semi-arid areas is far greater than conventional rangeland science understands or accepts”. Reliance on science leading the way, with a lack of supporting policies and unreasonable bias against livestock, provides some of the greatest impediments to wider adoption of the sort of practices that are employed at Bokhara Plains. Indeed, Bokhara Plains is a shining light, in stark contrast to others seen around the landscape when driving through the west of NSW. For the Brewarrina area, a stocking rate of 4 head of cattle (24 DSE) to 60 hectares is considered suitable. That Graham can have 1100 head in that same area for two days might be considered by some to be ridiculous and not sustainable.

Graham points out that it is important to manage equity and debt levels against cash flow to ensure potential to increase carrying capacity and the possibility of increasing the margins from stock trading. In addition, in the context of all the activities, it is necessary to watch for ‘staff burn out’ and to employ additional labour at the right time.

For Graham and Cathy, reduced overheads through increased productivity and the use of contractors for specialised operations has contributed to more satisfying outcomes and better use of family time.

Graham’s practices are regenerative and enable a much greater stocking rate



Graham and Cathy note, “Since we first had a change in thinking back in 2001 we have endeavoured to be able to help others achieve the same. Our view is that we want to live in a more profitable farming environment, with more neighbours not less, and in a community that is not struggling or welfare reliant”.

Graham is an active mentor to others in developing their enterprises to more sustainable grazing and enjoys the opportunity to encourage others through both mentoring and education programs.

Many people who attend various training courses that educate people on the possibilities of changing what they do, still find it difficult to take the first step when they return to the farm. Support needs to be provided to people to help them on their way. This fact has been recognised by the Western CMA who has ‘hired’ successful grazing course graduates to mentor locals to assist them in their transition.

…we want to live in a more profitable farming environment, with more neighbours, not less, and in a community that is not struggling…

Many people who attend various training courses that educate people on the possibilities of changing what they do, still find it difficult to take the first step when they return to the farm. Support needs to be provided to people to help them on their way. This fact has been recognised by the Western CMA who has ‘hired’ successful grazing course graduates to mentor locals to assist them in their transition.

Graham is considered a role model for other farmers in the wider region wishing to consolidate their formal grazing management training, through his Western CMA sponsored mentoring of four farming business. This activity includes on-farm visits and teleconferencing to help his clients focus on outcomes, not issues.

Graham’s training was based on the RCS Grazing for Profit course and this program allows for expansion of this support through a well developed extension program.

Graham and Cathy now enjoy many social benefits from the enterprise. Bokhara Plains has hosted ‘Keep In Touch’ days for graduates of earlier grazing management courses, and field days (including hosting his mentors – Allan Savory and Terry McCosker at different times). On these days around 150 people, many of them young farmers, eager to learn and talk about a wide range of challenges both on farm and more strategically are able to share experiences.

Cathy remarks that one of the clear positive community aspects of their lives now is the opportunity to sit down at dinner most nights with a wonderful and varied group of people from all walks of life.

Graham was adjudged the NSW Young Farmer of the Year in 2005, relatively early in the transformation of Bokhara Plains, and has gone on to be recognised with Carbon Cocky and CMA awards.

Graham and Cathy have been involved in the P & F at a local school, the Rural Financial Council, and in the local Show and Rodeo committee. They also host an annual visit to Bokhara Plains by the Warringah school group as part of a sister city relationship with Brewarrina.

The Bokhara Hutz accommodation package has also delivered welcome benefits for the family. Cathy and Graham both enjoy the opportunity to interact with their visitors and interested farming groups coming to visit the property. “It provides another opportunity to show people what we have done over the years and to learn from those around the table.”






David Clayfield has used applied soil science to create fertile, healthy soils from sand, in turn producing healthy pastures and healthy cows.



Download print-friendly version


Mil Lel, 15 km north east of Mount Gambier, SA South East

ENTERPRISE: Cattle. Contract rearing of dairy heifers

PROPERTY SIZE: 100 hectares




  • Rising production costs and animal health concerns


  • Introducing biologically-based soil conditioners to balance the mineral and microbial status of the soil
  • Strategic use of foliar fertilisers
  • Ceasing chemical inputs
  • Innovations commenced: 1995


  • Stock output increased by 33%
  • 25% reduction in irrigation used per animal weight produced
  • Infertile sand converted into fertile dark soils showing organic matter down to 60cm
  • Thriving pastures with fewer weeds


Faced with rising production costs and animal health concerns, David Clayfield made the link that improving soil health – physically, chemically and biologically – could address the cause of animal health and low productivity problems.

David eliminated the use of chemical and acid-based fertilisers, replacing them with biologically-based soil conditioners tailored to rectify deficiencies identified through soil tests.

Fifteen years on, yellow sands have turned into dark, healthy soils with a substantial increase in soil organic matter. Irrigation requirements have reduced from the region’s typical seven to eight megalitres per hectare each year to five to six, subsequently reducing the energy used for pumping and distribution.

Pastures are thriving, animal health has improved and productivity has increased, while the veterinary bills have plummeted – positive results, all round.



David’s grandfather came to Clover Estate in the mid 1930s to manage a large grazing estate. He bought a portion of it when the estate was subdivided for soldier settlement blocks after World War II. David’s father grew up on the farm and has now retired, leaving David to run the property.

The typical soil in the region is five metres of sand overlying limestone. Native vegetation is low open forest dominated commonly by manna gum (Eucalyptus viminalis), brown stringybark (Eucalyptus baxteri) and blackwood (Acacia melanoxylon). Most of the native vegetation in south-east South Australia has been cleared to make way for farming and plantation forestry, but there is a small remnant left on the Clover Estate property.

There are no surface streams in the limestone plains area of south-east South Australia – rainfall infiltrates into the limestone, which forms an extensive shallow aquifer system. Dairying and cropping in the region depend on pumping irrigation water from this aquifer system.

David’s grandfather and father operated Clover Estate as a dairy farm for many years, irrigating the pastures using water pumped from the shallow limestone aquifer underlying the property. After the dairy industry was deregulated the property proved to be too small to run viably as a milk producing dairy farm. Since 2000, the farm has been used to raise dairy heifers that are bred elsewhere in the district.


Heifers are reared on contract on a ‘pay for weight gain’ basis. The calves are brought to the property at four to five months age and within one year they have gained about 200 kg, i.e. a young dairy cow. The farm has the capacity to ‘turn off’ 600 to 700 heifers a year.

The current market for these young cows is the Republic of China. The heifers are shipped to China where they are mated upon arrival and begin producing milk before they are two years old.

A total of about 62 hectares of Clover Estate is irrigated and the rest is used for unirrigated grazing and cutting hay to provide feed during winter. A highly modified landscape, almost all native flora on Clover Estate has been replaced with introduced pasture species.

Clover Estate lucerne pastures which are interspersed with rye grass, clover and plaintain.


South-east South Australia is made up of distinct land systems. The main underlying geological formation comprises limestone layers that have produced fertile soil, including the famous ‘terra rossa’ (red earth) soils of the Coonawarra wine region. Scattered in bands across the plains are low wide sand ridges, running roughly parallel to the present coastline. These sand ridges formed along ancient coastlines in the past few million years as the sea level rose and fell and the land surface was uplifted during ice ages. These sandy soils have low natural fertility.

When the large grazing properties were ‘broken up’ for farming and closer settlement, these sandy soil plots were not in demand. The sandy areas in private ownership were used for grazing, rather than cropping.

Clover Estate and many other properties in the area have been used for dairying, irrigated with groundwater pumped from the limestone aquifer, for many years. This groundwater is rich in calcium, which increases pH from natural levels of around 5, that is, slightly acidic, up to 7 to 8, which is slightly alkaline. This change causes nutrient imbalances and encourages growth of Yorkshire fog or velvet grass (Holcus lanatus), a perennial grass. Holcus lanatus is generally considered in Australia to be a weed of saline and waterlogging-prone sites and has little grazing value. The traditional way to redress the nutrient imbalances in the area is to use superphosphate and potash – potassium-rich fertiliser.

In 1992, a soil test showed organic carbon at 2.1%, total cation exchange capacity 3.5, and deficient levels of 17 macro and micro soil nutrients at Clover Estate. Prevailing advice was to continue to apply higher amounts of chemical fertiliser to maintain production. But high chemical and fertiliser inputs and high water use were proving to be financially unsustainable. Furthermore, excessive weed competition had been developing despite regular use of knock-down and selective herbicides. Insecticides were used regularly for red-legged earth mite and other pests.

These problems, high levels of irrigation per animal production unit, on top of recurring animal health issues – mastitis, prolapse, sore feet – and concern about personal exposure to chemicals, led David to investigate more sustainable ways to improve soil and forage quality.



“The aim was to start with the soil health, by balancing the mineral and microbial status of soil, and the subsequent benefits in forage quality and animal health would follow.”

David had realised that management of animal health with medicines was only addressing the symptoms of animal health and performance, rather than the causes. Equally, chemical management was only creating recurring problems at extra cost. Conversely, improving soil health and mineral balance and availability in pasture would address the cause of animal health and low productivity problems.

David found that experimentation and mineral supplementation redressed some animal health problems. Success with this process indicated the strong link between animal nutrition and health. This prompted David to undertake further investigation to address animal health problems through the soil and fodder.

David’s aim was to stop using chemical or acid-based fertilisers and pesticides. He wanted to improve soil fertility and water-holding capacity by adding biologically-based stimulants that increase soil organic matter.

He encountered challenges with adopting new methods, the initial impediment being a lack of information about alternatives to the ’single super’ use way of farming. He was required to perform ongoing research, education and trial and error to identify his options and learn more about the links between soil and animal health.

David initially drew on information from Pat Coleby, a practitioner of animal health through soil health, which provided a useful guide. He also attended short courses in different approaches to fertiliser management, increasing his understanding and confidence in soil mineral and microbial management. David notes, “I have utilised interactions with agronomists and soil scientists from biological product supply companies to assist in fertiliser program management and planning”.

David also read widely to supplement the courses and consultation. His collection of reference books include Charles Walters and C.J. Fenzau’s Eco-farm; Arden Andersen’s Science in Agriculture: Advanced Methods for Sustainable Farming; and Pat Coleby’s Healthy Land for Healthy Cattle.

David Clayfield with bags of soil treatment
  used on the property.

An equally significant challenge was the lack of interest from other farmers, extending even to ridicule of some of the changes made and methods tried.

egardless, David advises, “Work it out, stick to it, no matter what everyone thinks. With the experience and knowledge now available, you could build carbon and fertility in your soil in much less time than it took us to learn how by trial and error”.


Understanding the physical, chemical, and biological aspects of soil through applied soils science and putting this knowledge into practice over time, has been the fundamental innovative practice applied at Clover Estate.

“Testing the soil and observing the plants and animals, it became obvious that use of chemicals and acidic fertiliser were not a long-term solution”, David says. He stopped using chemical fertilisers in the mid 1990s, five years before the switch from milking to raising heifers.

“The aim was to start with the soil health, by balancing the mineral and microbial status of soil, and the subsequent benefits in forage quality and animal health would follow.”

This image has an empty alt attribute; its file name is cs-clover021.jpg
Spraying biological liquid fertiliser.

The process began with soil testing to assess the situation. Soil treatments were applied with the objective of addressing mineral balance, improve soil biological processes and overall soil fertility specific to paddock soil test results. The key ingredients are residue-digesting fungi and nitrogen-fixing bacteria, including strains of Azotobacter, Bacilus, Pseudomonas, and Trichoderma 1LawrieCo (2009) Sustainable update Winter 2009, LawrieCo Sustainable Farming, Wingfield, South Australia. Nutrients, carbohydrate and minerals are added to enable the bacteria and fungi to multiply in temperature-controlled 5000 litre aquaculture tanks. The minerals included a carbon, humic base to stimulate soil biological processes and organic matter building activity. The resulting brew is applied to the paddocks yearly at 50 litres a hectare.

This image has an empty alt attribute; its file name is cs-clover041.jpg
Microbe brewing.

In addition to soil building programs, a range of bio-fertilisers, such as foliar and fertigated (application through an irrigation system) mineral, microbial, kelp, fish, humic and fulvic fertilisers have been applied over the past 15 years. Leaf tests are taken to identify lacking nutrition, enabling application of nutrients to address imbalance in plants.

Animals’ performance and grazing preference, along with observing the plant species that are growing, are used as an additional guide as to excess and deficit minerals in the soil.

To target these treatments accurately, David has equipped himself with a refractometer, to measure the sugar concentration in plant sap, and other measurement devices and has soil tested by an agricultural laboratory in Adelaide.

In David’s words, the three rules for the soil remediation techniques he has developed and applied are “balance, balance and balance – carbon to nitrogen ratio, calcium to magnesium ratio, etc. … look at the whole picture from soil to human health”.



This image has an empty alt attribute; its file name is cs-clover061.jpg

The results are evident in the soil profiles of remnant and treated soils. Soil carbon has increased by 45% in the top 150mm, and potentially substantially more at depth. Organic carbon measurements show an increase from 2.07% in 1992 to 2.92% in 2011.

David estimates that, since the mid 1990s, stock output has increased by 33% while he is using 25% less irrigation water per animal weight produced.

As is usual in the region, centre pivot systems are used at Clover Estate to irrigate with water pumped from the shallow limestone aquifer. Centre pivot irrigation uses sprays fitted on a boom that travels in a circle around the centre pivot point. Electric motors are used to drive the wheels that carry the boom. Two such systems operate at Clover Estate, one of about 300 metres radius, covering about 28 hectares, and the other a 330 metres radius, covering 34 hectares. A neutron probe is used to measure soil moisture levels and determine when watering is needed.

This image has an empty alt attribute; its file name is cs-clover051.jpg
Clover Estate centre pivot irrigation layout.

Due to the improved structure of the soils, David has found that his total water use is now around 5-6 Ml/ha/year compared with the 7-8 Ml/ha/year commonly used on sandy soils in the region. This is particularly noteworthy in relation to rainfall, with eight of the last ten years receiving below-average annual falls. As well as using less water, David’s energy costs from pumping and driving the boom have halved.

Cessation of chemical weed control and David’s soil management has ensured vigorous growth of preferred pasture species, combined with rotational grazing. The property is fenced into 50 paddocks, ranging from two to six hectares. The rotational grazing cycle also aims to break the life cycle of intestinal gut parasites.

David highlights, “Pasture plants grow better and there are now a lot fewer weeds. Lucerne varieties that had been abandoned due to poor performance by most typical, chemically managed properties perform exceptionally well on our property. Lucerne, rye grass, clovers, are the predominant species, along with a variety of herbs for balanced pasture. Animal health issues are primarily averted, due to the density and balance of the minerals in our pasture”.

“Strategic use of selected foliar fertilisers… reduces or eliminates sap sucking insects attacking the pasture. We have found also that foliar fertilisers strengthen our desirable forage species, making them more competitive over weeds.”

David believes that “Holistic management includes an appreciation of natural processes and an understanding of applied soil science. If soil biology functions to its best ability, the availability of minerals to plants will be at its best. If animals and people have access to adequate mineral diversity in diet, then disease is less … and performance is better. Our farm enterprise is more profitable, and more enjoyable. We will leave an improved legacy.”

“Our example has inspired other farmers, particularly dairy and graziers, to adopt aspects of soil management as we have. Looking at our soil profile, black to the depth that it is, speaks for itself. Most farmers appreciate that something is different and improved on our property. We are happy to share our journey, as it appears to give confidence to other food producers to take on similar management. Less chemicals affecting the environment, with improved quality of food for consumers is a better outcome than prior to adopting biological farming system.”


The typical condition of the original infertile sand is indicated by the profile under the patch of remnant native vegetation on the southern edge of the property, where no treatments have been applied (left). The results of 15 years of organic-based treatments are evident in the much darker colour, resulting from higher organic matter content down to 600mm where it used to be devoid of biological activity (right), which means that nutrient and water holding capacity are far higher.






Shane and Shan Joyce have been involved in farm landscape regeneration for over 37 years. They believe that mixing their own and other peoples’ experiences has helped them in their successes and in achieving their vision for the landscape at Dukes Plain.




30 km south of Theodore, Southern QLD Brigalow Belt

ENTERPRISE: Cattle. Certified organic beef cattle breeding, backgrounding and fattening

PROPERTY SIZE: 7900 hectares, 3000 hectares farmable




  • Inputs and maintenance costs exceeding production returns


  • Comprehensively monitored and measured time-controlled cell grazing
  • Soil improvement using biodynamic methods
  • All organic management
  • Innovations commenced: 1993


  • 30% productivity increase with gross margins between $64-$113 per hectare
  • Higher yields on revegetated brigalow paddocks than cleared paddocks
  • Increased water availability due to increased rainfall infiltration and reduced losses to evaporation


Shane and Shan Joyce came to Dukes Plain in 1982 from a background in organic farming. Over the years they adopted new management practices: ceasing the use of fire, retaining timber and valuing regrowth, prioritising pasture diversity and native pastures, and employing low productioncosts and inputs. In 1993 a radical change was made to the grazing system on Dukes Plain, moving from continuous grazing in sevenpaddocks to a cell grazing system across almost 100 paddocks. Focus moved from the production bottom line to a measure of kilograms of beef produced per hectare of available pasture. Production increases were experienced within two years of adopting planned grazing management.

In addition to cell grazing, outcomes were further enhanced by the later application of organic and biodynamic methods.

By persisting through obstacles and impediments to change, the Joyce’s have experienced improvement in the natural resource with healthier soils, more diverse pastures, more trees, fewer weeds, improved water quality and water use efficiency, as well as increased carrying capacity, easier animal management and reduced labour requirements. They have been able to maintain or increase production through periods when many properties have had to reduce stock numbers.

Observation, monitoring, and recording data has allowed the Joyces more informed decision making, benefiting both landscape and business health. Approximately 800 hectares of crop land has been returned to perennial pasture at a zero dollar cost and gross margin per hectare is now between $64 and $113 on land types varying from eucalypt forest to brigalow scrub.

Grazing management on Dukes Plain sees maximum animal density matched to the carrying capacity of the land



Dukes Plain is a 7900 hectare sub-tropical property of which 3000 hectares is used as grazing land for beef cattle. This country was formerly dominated by brigalow (Acacia harpophylla) scrubs and semi-evergreen vine thicket, which are both endangered ecosystems, and small areas of eucalypt forest.

The remaining 4900 hectares is sandstone escarpment of virgin native vegetation comprising eucalypts, spinifex, acacias, grass trees and numerous other shrubs, forbs, and grasses. This area is a significant wildlife corridor linking Isla Gorge and Precipice National Parks.

Traditional management of Dukes Plain had seen continuous grazing over its seven paddocks, with water provided through open dams with constant stock access. The brigalow and other vegetation had been cleared from the landscape as a result of government lease conditions in the newly opened 156,000 square kilometre Fitzroy River Basin in central Queensland in the 1950s and 1960s. The clear and burn practices reflected the tree management techniques of the era. Regular fires were also used to control timber regrowth.

Shane Joyce points out that, as a consequence of the prevailing farming practices, the landscape was in steady decline from the beginning of the brigalow scheme. Pastures were degrading through loss of soil structure and fertility and species variety had reduced. This was combined with a reliance on external inputs with rising costs all at the same time as commodity prices were falling.

Shane and Shan took over operation of the property in 1982 after coming from a background of permaculture and organic farming on the Sunshine Coast. Not daunted by what they had come into, they began experimenting with elements of various farming management systems ranging from fully conventional to what, at the time, were considered extreme alternatives. They read about advantages of various alternative agricultural models from around the globe. They constantly questioned their farming practices and the resultant impacts on the land and production. In this process they focused on differentiating between symptoms and causes in the indicators that they observed.

This process of observation and review continued over the next ten years until Shane and Shan had gained a body of skills and knowledge that enabled them to begin to measure the results of their management practices.

Dukes Plain vista



Change was evolutionary on Dukes Plain, but became inevitable when a cost benefit analysis demonstrated that input and maintenance costs from their current farming practices were far exceeding returns from production.

The reality of the inevitable outcome of this situation firmly committed Shane and Shan to a complete change of production management. They realised that the landscape was out of balance and it needed to be returned to balance to achieve long term economic production. They were convinced that, once the balance was returned, they could increase cattle carrying capacity, using the same area of land, without detriment to the landscape.

Self education played a big part in deciding what changes to make to production operations. For the Joyces this included reading, observation and experimentation with both alternative and conventional systems. Shane and Shan spent eight years learning about and working with permaculture techniques. Knowledge was furthered through attending workshops, courses and field days, and engaging with leading edge consultants. They eventually completed the Grazing for Profit course which, among other outcomes, provided the tools and guides to enable measurement of production success.

Changing the grazing system on Dukes Plain was the major single change to overall production. The introduction of cell grazing for their cattle focused on high stock density for minimum grazing time to allow pasture maximum time to recover. This has lead to significant improvements in landscape health and production outputs, as detailed below, as well as substantial reductions to inputs required. As Shane says, “The ‘cow tractor’ is now the most used piece of farming equipment”.

A one-off capital investment in fencing and water distribution was necessary to establish the cell grazing system. An extensive network of single wire electric fences, sub-divide the property into what are now 97 paddocks of around 20-40 hectares each. A water reticulation system services all paddocks, gravity fed through polythene pipes from two ‘turkey’s nests’ – dams constructed at high points of the property which can have water pumped into them as required.

Continual monitoring and adjustment has been an essential part of the Joyce’s strategy. Receiving peer input through exposing the property and management to public scrutiny by hosting field days has also been an important element of implementation. Close working relationships have also been established with conservation groups and Queensland National Parks officers.

Currently, Shane and Shan are being approached by resource companies seeking to purchase environmental offsets. These organisations have been attracted to the farm by the high levels of regrowth on the previously cleared endangered brigalow and semi-evergreen vine thicket land types. Shane and Shan see the potential for possible future sale of soil carbon credits. However they note, “This is a complex issue that requires further investigation and clarification to ensure appropriate recognition of the land, the landscape and agricultural production”.

Seven paddocks were converted into
  ninety seven on Dukes Plain


Shane cites a broad range of challenges that he has encountered in the process of changing their property management, “The first and most obvious challenge was overcoming prior learning ranging from my schooling days – the broadly ingrained views that Australian soils are old, barren, degraded and can’t produce topsoil – to the generally accepted use of low management techniques”.

Shane points out that this long accepted approach is seen as the easier path, but over time it inevitably degrades the land, leading to ever falling production. “From that outcome it is only a short step to the general acceptance of external interventions such as fertiliser dependency, re-seeding and drought feeding regimes, all of which also eventually contribute to degradation of the system.”

…having the courage to try new methods and trust [our] own judgement has been an obstacle in itself.

Even with newly acquired information and the benefits of formal study and research, the Joyces found that it was challenging to put the theoretical principles into practice in a manageable form. This was exacerbated by a lack of peers to share ideas with or successful models to ‘copy’ from. General scepticism of new or different ideas was, and is, commonly encountered. Both Shane and Shan say that having the courage to try new methods and trust their own judgement has been an obstacle in itself. Old habits can be hard to break.

In addition, Shane notes that, “Declining product value across the agricultural sector, in contrast to increasing land values, provides additional challenges. Wrong decisions can easily lead to economic hardship”.

Shane also sees a threat to innovative land management in the dictation of practices, such as vegetation and pasture management, by authorities which often do not have direct experience on the land. “Ordinary people in remote places lack the opportunity to ‘have a conversation’ with such entities. To share and demonstrate actual experiences, is a missed opportunity for these authorities and virtually guarantees ‘more of the same’ from them.”



Shane Joyce firmly believes that the natural resource base does not have to inevitably ‘run down’ with production over time, as is a commonly held view. With the management techniques applied, the Dukes Plain environment is clearly ‘running up’, showing only continuing improvement, not degradation over time. A number of principles have helped the Joyces to achieve continuous improvement of their farming resources, including:

  • Maximize animal density through large mob size and small paddocks.
  • Match stocking rate to carrying capacity. Have a good agent who assists with selling and acquisition of appropriate stock as determined by rainfall and pasture conditions.
  • No purchasing of supplementary feed for livestock during drought (see point two).
  • Do not become emotionally attached to livestock (see point two).
  • Provide adequate rest for pastures to fully recover before grazing.
  • Continually monitor and adjust.
  • Encourage diversity of animals and plants.
  • Provide adequate tree cover on landscape to minimise stress on land, livestock and people.
  • Continue to up-skill management and staff through ongoing education.
  • Minimise external inputs.
  • Seek the best in external advice.

The 97 paddocks are now grouped into three cells to manage the various mobs of cattle. Actively managed rotation averages around two to three days grazing and 60 days recovery, longer in slow growing season. Stocking is based on 26 stock days per hectare per 100mm of rainfall. This is based on one adult equivalent – a 450kg animal at 0.5kg per day live weight gain to 2 hectares. The stocking rate is continually adjusted according to rainfall and feed availability.

In 1995 the Joyces began to record individual paddock yields. Records maintained and grazing practices are based on those learned in the Grazing for Profit course. Measurements were more rigorous in early years, though these have been adapted over time and reduced to what is most useful. Specific ground cover measurement processes used to be followed in a regular format to record both ground cover and species present, but these have been reduced to set point photographs taken twice a year at the end of the growing and dry seasons.

A recently grazed paddock (left) next to a recovering paddock (right)

Shane sees a real strength in having the ability to measure the results of different landscape management methods in dollar terms – tools to measure trends in both landscape and business. The paddocks are now continually monitored and measured and grazing time adjusted accordingly to support optimum grazing and recovery periods.

Fixed point monitoring, left: October 1997 (top) and October 2011 (below); right: March 1998 (top) and March 2012 (below)

Shane points to the importance of planning, “Once the infrastructure was established, preparing, monitoring and controlling the grazing management plan became the major regular input required for the operation of Dukes Plain. A one to two month grazing plan can be prepared in a couple of hours, outlining paddock rotation in a form that can be followed by anyone. Less physical work is now required on the property, mostly just opening and closing the electric fence tape ‘gates’ to move cattle from one paddock to another, in accordance with the plan, and occasional fence repairs”.

Shane and Shan value continuous learning. All management and staff on Dukes Plain attend the Grazing for Profit workshop, as well as the Low Stress Stockhandling workshop, various field days and biodynamic farming workshops.

As an added bonus, the increased human visibility and animal handling has made the stock far more approachable and easy to manage. The stock are familiar with the rotation process and eagerly move between paddocks once gates are opened.



Shane and Shan use biodynamic products to enhance soil fertility and have adopted innovative distribution practices for improving the soil quality on Dukes Plain. “Fertile soils provide oxygen, water and nutritious food for plants, animals, insects and microbes”, Shane acknowledges. Good soil underlies – literally and metaphorically – much of the success on the Joyce property.

Fertile soils provide oxygen, water and nutritious food for plants, animals, insects and microbes.

Good litter cover on the soil and denser stands of healthy perennial grass plants and legumes, all contribute to creating soil organic matter, leading to greater water absorption, and minimising surface erosion and runoff. Traditional management practices saw soils in decline with poor water and mineral cycles. District averages for soil organic matter are less than 1%. Measured in 2003, Dukes Plain showed around 4% soil organic matter.

The 2003 soil tests revealed no glaring deficiencies, however more recent analysis identified insufficiencies in levels of boron and manganese which are now being addressed. It was through a series of events that Shane developed an innovative and organic way of increasing the nutrients in his soil.

Upon adopting cell grazing, Shane felt pressure to put urea in the water for the cattle as a protein supplement. Uncomfortable with this concept, due to urea’s potential toxicity, Shane explored other options, influenced by previous experience in permaculture and interest in biodynamics. Initially he experimented with releasing liquid seaweed in water troughs by means of a special dosage pump mechanism. However, in 2002 he explored other options as management of the dosage pump/medicators was challenging when caretaker maintenance of the property was required.

Shane decided to address nutrient deficiencies and improve soil fertility with a product entirely sourced and made on the farm. He developed a biodynamic preparation drawing various components from the field to produce what he now calls ‘soil activator’.

Originally attempted methods of distribution by spraying on paddocks was time consuming and unachievable for the size of the property. Aerial spraying was too costly, so alternative distribution methods were considered. Shane noted that the stock responded favourably when diluted supplement was added to the drinking troughs, and thought that the preparation could also act as a tonic for the animals.

Further experimentation for dosage control led to the development of a ‘tea bag’ made from shade cloth, filled with the soil activator and placed by the inlet valve of water troughs. As a result, the product was ‘steeped’ every time the cattle drank, passing through their digestive systems and eventually ending up on the soil in their waste.

Shane observed the formation of greener patches related to cattle dung and urine points, also noting that the cattle did not avoid these areas in their grazing patterns. Soil biology indicators showed improvement in comparison to ‘untreated’ ground. These green patches have gradually expanded over time.

Ingredients to make soil activator can be purchased for around 60 dollars a kilogram, and Shane’s biodynamic preparations are sold by one of Australia’s top biodynamic educators. The ‘tea bags’ weigh only a couple of kilograms and diffuse into the water, moving from paddock to paddock with the cattle, for up to a number of weeks before they need to be replaced.

‘Tea bags’ filled with biodynamic preparation are attached to a
  float and placed into water troughs.

This method of distribution is an innovative way of using the ‘cow tractors’ to further fertilise the land and improve soil biology at a very low cost. Results from 2012 soil biology tests are being eagerly awaited.



Shane Joyce shakes his head in response to the previous vegetation management practices and how they are today costing him money.

“Through the 1950s and 1960s the brigalow and softwood scrubs were pulled with bulldozers, let lie for a couple of years, then burned and aerially seeded with a mixture of grasses. Subsequent timber regrowth was dealt with through burning and mechanical means from the 1970s. With fuel price rises and commodity price declines, by 1982 the cost of maintaining the pasture was beginning to outstrip the grazing return.”

Management practices changed, fire ceased being used on the property in 1977 and regeneration was allowed to occur naturally. Some strip removal of regrowth was performed in 1988 – corridors were blade ploughed for 120 metres with 30 metre shelterbelts, and later narrower corridors of six to seven metres with same sized shelterbelts on another part of the property (see image below). Original intentions were to undertake further clearing and thinning, however this was never performed, particularly once production rates were observed.

“Grass diversity, particularly native species, increased quite quickly after establishment of cell grazing.”

“Areas of natural revegetation with around 40% canopy cover are yielding nearly 40% greater return than those areas that were completely cleared. Counter to the long held views that the land needed to be cleared to provide more pasture for grazing, the trees are instead providing protection to the pastures and soils, allowing for much better growth and increased fodder for the cattle. Water loss through evaporation is better controlled, and the trees – notably the narrower corridors more so than the wide ones – protect the pastures from wind and frost damage. Increased diversity in grasses is also evident.”

Shane points out where up to 50% of previously cleared land on Dukes Plain has now retained regrowth. He estimates that around a 40% canopy cover appears to be optimal in the brigalow landscape, and natural thinning seems to be occurring.

He also points out that previous management practices had pastures which were developing into monocultures of buffel grass (Cenchrus ciliaris), and native grasses were being dominated by unpalatable species such as white spear-grass (Aristida leptopoda), wiregrass (Aristida calycigna) and yabilla grass (Panicum queenslandicum).

“Grass diversity, particularly native, increased quite quickly after establishment of cell grazing. Native grasses which emerged and rapidly increased include curly Mitchell (Astrebla lappacea), hoop Mitchell (Astrebla elymoides), kangaroo (Themeda triandra), flinders (Iseilema membranaceum), satin top (Eulalia aurea), Queensland blue (Dichanthium sericeum) and sorghum almum.”

As a result the ‘monoculture’ species decreased, though there seems to be a natural increase and decrease in the predominance of all species over time, with native grasses growing into introduced pastures and vice-versa. When asked about the mix of native grasses into improved pastures, Shane says that it is harder for native grasses to dominate as they have longer rest and regeneration requirements as well as unpalatable stages of growth. “Production does not always support the predominance of natives, for example kangaroo grass is the first to emerge in spring, and hence is eaten first. However, the regular movement of stock – which can also be manipulated and controlled with selected rotation – allows for animal transfer of grass seed to desired areas and some influence on pasture variety.” The cow tractors help again.

Left: Leucaena provides a source of protein for the cattle. Right: Shrubs are quickly stripped during grazing periods

The Joyces use no chemical interventions and are not attempting to remove any particular species from their pastures as greater resilience is obtained through biodiversity. Also, over time cattle grazing preferences have been observed to change. Native legumes also multiplied naturally with cell grazing, and the leguminous shrub Leucaena leucocephala has also been randomly introduced to enhance animal protein supply. Protected for a couple of years until they are established, these shrubs are a favoured fodder for the cattle, which quickly strip the leaves in their couple of days in the paddocks.

Left: Pasture grasses growing under eucalypt. Right: Recently grazed grass under brigalow

Cell grazing, more fertile soils and vegetation protection has also allowed for grasses to grow right up to trees in both the brigalow and eucalypt. Some areas of high animal traffic are still bare, but this too is constantly improving.

Overall, recovery periods with cell grazing provide for root development and better and continuous ground cover (which, as previously mentioned, equates to increased rainfall infiltration and water holding capacity). Pasture root systems are visible down 1.7 metres.

Shane is insistent that maintaining a minimum pasture height and having sufficient leaf allows grasses to grow from sunlight energy rather than from root reserves so pastures are more resilient and recover quickly with minimum impact on the root system.

Stock have become used to being handled as a consequence of the grazing strategies. Despite only being held by a single wire electric fence, the stock do not try to push through fences as the grass is not always greener on the other side, and regardless, they know they’re going to be moved in a day or two, so are always content.

A single strand electric fence easily contains the cattle which wait patiently to be moved to the next paddock.



Provision of water to stock and enhancing rain infiltration in the landscape are the Joyce’s primary water management practices. These have now resulted in greater water use efficiency and enhanced water quality.

Dukes Plain lies at the top of the catchment area, with only one creek, Cattle Creek, originating in a neighbouring property, running along the southern boundary. Outflows from the property all run into the Dawson River, from Cattle Creek in the south, Red and Four Mile Gullies which flow to Gorge Creek in the North, as well as through Lambing Gully. There are no wetlands on the property and the only spring is high on the escarpment and not useful to the property.

As a result, all stock water is provided by farm dams filled from overland flows. Water is reticulated through a poly pipe system to poly and concrete troughs from the ‘turkey nests’. Water points are located at the intersection of four paddocks. Shane initially attempted his own installation of polythene piping across the property, but later obtained advice from local pipe and pump experts to ensure the use of the most effective pipe size and to obtain suitable pressure.

Most dams remain open to stock access, though with paddock rotation they are only exposed to stock for a maximum of some 21 days per year. This exposure aids compacting of dam edges, as completely protected dams had previously dried and cracked then split in flood. As stock access is limited, any damage is minimal.

A couple of dams are still fenced, one to control the water point from animals living in surrounding scrub the other to allow for enhancement and rebuilding.

Water points are located at paddock intersections and provide clean
  drinking water to four paddocks.

Shane describes outcomes of his watering plan, “With the reduced stock access and increased vegetation experienced with cell grazing, both water quality and water-use efficiency has improved. Algal blooms which had previously caused fish and duck deaths no longer occur. The improved ground cover now filters nutrient load washing into dams and less stock time on dams has reduced concentrated nutrient sources [dung and urine] in the immediate area”.

With an average annual rainfall of 700mm, in recent years rainfall has varied from as little as 314mm in 2006 to a high of 1538mm in 2010. The Joyces monitor post rain events to observe how deep moisture has penetrated and have found that rain infiltration in the soil has improved. Rainfall events of less than 10mm have traditionally been seen in the area as “useless”, however with the conditioned land and high levels of soil organic matter, this moisture is now being absorbed into the Dukes Plain soil. With around 70% of rainfall events comprising less than 10mm rainfall, the Joyces are now able to harness this resource that previously had been lost.

As shown below, land has been contoured in certain areas away from gullies and as required to dams. This technique follows Yeomans’ Keyline Design principles and aims to ‘keep water on the farm, not in the gully’. This is happening across the property as improved vegetation helps to keep moisture in the soil and pasture. Whilst the reduced overland flows result in increased difficulty in filling stock dams, this is an acceptable part of having increased soil moisture content.

View over Dukes Plain showing narrow strip-cleared shelterbelts, wide strip-cleared shelterbelts and water contouring.


Previous methods of weed and pest control used included fire, 1080 baiting for dingoes and shooting of pigs and kangaroos. Now no control methods are used other than through cell grazing strategies. While some weeds persist to varying degrees, amongst the increased diversity of species these are seen as symptomatic of a particular issue and allowed to follow their cycle. Weeds are seen as an ally to colonise bare ground and help change the nature of the soil to make it more suitable for growing grasses.

A better balance of wildlife now exists on the property and despite more extensive water availability; kangaroo and wallaby numbers have reduced and are at an acceptable level. This could be as a result of these animals preference for short new growth, which is less common on Dukes Plain with current management strategies. There are some feral pigs and wild dogs in the region but these are not particularly problematic.


Increased biodiversity in plant, animal, insect and other species is a clear outcome of the farming practices employed at Dukes Plain.

Diversity in pastures of both native and introduced species is extensive. There is an increase in leguminous shrubs and forbs across the paddocks. Ground cover has increased and regeneration is occurring naturally. In areas where trees numbers are high (too many stems per hectare). a natural self thinning appears to be occurring.

Vegetation linkages are severely limited to the north and east by clearing of surrounding properties, however linkages to south and west are strong due to the topography, which has limited clearing. The area which had received wide strip clearing in the 1980s showed greater biodiversity than the narrow corridors, but this was due to its maintaining connection with surrounding remnant vegetation, whereas the other area had been previously disconnected.Across the property increased diversity and population of birds has been observed over time. Regrowth areas provide wildlife corridors to the undeveloped ridge country and habitat for many more bird species, including significant numbers of small birds due to regeneration of small prickly shrubs which provide habitat that used to be burned.

Earthworms, spiders, ant and other insect numbers and types have increased. The vegetation has also provided the ideal habitat for the orb weaving spiders which can consume significant numbers of insects, such as grasshoppers, which damage crops and pastures.

Golden Orb spiders assist with pest control



Shane and Shan are experiencing financial, social and environmental gains as a result of their property management practices.

A 30% productivity increase was obtained with cell grazing – paying off implementation of the new model, such as investment in infrastructure, in three years. Previously high external inputs such as seed, machinery and labour have all gone. No production, pasture or land management expenses or inputs costs have been incurred for 24 years. They are no longer required. Shane believes that the value of this method is clear in the lack of input costs – profit is inevitable.

The landscape is telling us that we are on the right path…

The previous focus on animal genetics and individual animal performance, or production per head, has been replaced with the simple measure of kilograms of beef produced per hectare of pasture. Greatest yields are being experienced in the revegetated paddocks – a clear demonstration that totally clearing paddocks is ultimately detrimental to pasture production.

As shown in the graph below, yield figures from the past 16 years of data demonstrate that totally cleared paddocks (scrub soils) are yielding measurably less ($83.96 per ha per year) than paddocks which have 40% ($112.74/ha/year) and 45% ($98.04/ha/year) canopy cover, while eucalypt forest with 90% canopy is yielding $64.83/ha/year.

The property now serves as a host for a broad range of visitors, including field days for the public, work experience for school groups, WWOOFers (willing workers on organic farms), and grey nomads. The Joyces feel that hosting helps with re-building the community on farm, which also flows on into the local towns. Hosting is also a valuable way to bridge the gap between city and country, also providing an excellent method of education.

The Joyces believe that quality food for people is being produced on Dukes Plain through organic and biodynamic practices. In addition, biodynamic preparations are being produced for on-selling by one of Australia’s top biodynamic educators. This helps fund the continuing education of farmers and gardeners in the biodynamic methods.

Shane Joyce branded beef is certified organic.

The improved landscape health would arguably result in cleaner water entering the Dawson River and eventually into the Great Barrier Reef.

Overall, compared to the previous business model on the property, the Joyces have experienced improvement in the natural resource and natural capital through more diverse pastures, more trees, fewer weeds, improved water quality, efficient water use, increased carrying capacity, easier animal management, and reduced labour input and requirements.

Shane and Shan are experiencing a greater sense of wellbeing with their current management practices, “the landscape is telling us that we are on the right path”. Observing the problems that have arisen in agriculture in the recent past, and not being affected by them, provides the clear impression that they are doing is working.

There is a clear sense of satisfaction and pride in being a part of the landscape for management, staff, volunteers, and visitors of Dukes Plain.


Shane and Shan have found that data capture, planning, monitoring and adjusting has been invaluable to success on Dukes Plain. By ensuring careful observation, such as of plant lifecycles, and behaviour adjustment, such as not grazing when grasses are just shooting, better outcomes can be received. Shane says that he wishes he had been more diligent in these activities in the early days of adopting changed practices.

“However”, he says, “I have been lucky, I have learned to have the courage to make mistakes and re-label them as learning opportunities. I believe more time can always be spent in seeking out knowledge”.

…choose what works for you from the range of methods and information available…

And what about a baseline from which to judge progress? In Shane’s region he finds that the roadside provides a good comparison tool for his own pastures. “Without technology or investment, they provide me with the opportunity to observe what is occurring naturally. That stimulates thinking on what systems or management can be implemented to replicate healthy results.” Shane’s experience has shown that investment in most productive areas first, reaps the greater rewards, “Improvements will spread to less productive areas, and increased production will subsidise later action in the harder to regenerate areas”.

With the broad range of practices available, Shane advises to choose what works for you from the range of methods and information available and from your own ideas and experiences and to “select the tiles that you want and make your own mosaic”. Ultimately, he recommends “care deeply about the land and take responsibility for your decisions and actions”.

Reference: Joyce, S. (2000), ‘Change the management and what happens – a producer’s perspective‘, in Tropical Grasslands, 2000, Volume 34, pp223-229