Message from Alasdair Macleod, Chair of the Soils For Life board

Message from Alasdair Macleod, Chair of the Soils For Life Board

As Narelle mentioned in her newsletter last month, the Soils For Life team has been busy during lockdown. Of course, it has not been possible to carry out any fieldwork, but that has not stopped the team from working on a number of different fronts.

Firstly, there has been a good deal of ‘back office’ work to bring the operations of Soils For Life up to the standard required to support our activities going forward. This has included the appointment of new management accountants who have already demonstrated their worth by quickly getting on top of the finances.

Secondly, Soils For Life has secured operational funding for the next four years from the Macdoch Foundation. This support will enable the team to continue the case study work , but also look to branch out into other activities in due course.

Thirdly, applications for the vacant role of CEO have been pouring in! I am pleased to say that we have received applications from a wide range of high quality candidates. A sub-committee of the board comprising myself, Charlie Maslin and Eve Crestani will be working through the candidates over the next few weeks and we hope to make an appointment before the end of July.

Lastly, it is clear that interest in regenerative agriculture continues to grow strongly and Soils For Life will be riding this wave of interest in a number of different ways. Of course, the programme of case studies will continue and, now that lockdown is coming to an end, the team will be keen to get back into the field. There is also work being done on an application for project funding to the Commonwealth Government’s Future Drought Fund. This is an excellent initiative, being administered by the Department of Agriculture, which will support activities that build drought resilience. For what is regenerative agriculture about if it is not about drought resilience? We feel that Soils For Life and the consortium of parties that are being assembled alongside us, will deliver a strong proposal which I hope we will be able to tell you more about in due course.

In summary, a great deal has been achieved to strengthen the organisation and equip it to provide even more support to those farmers who are considering some changes to their management practices. In fact this month’s newsletter is full of resources and information from the Soils For Life team including a catch up with Rhonda and Bill Daly around the recent performance of their case study property Milgadara as well as education resources around bird surveying and water management strategies. We are also sharing our submission to the Environment Protection Biodiversity Conservation Act review.

Alasdair Macleod, Chair of the Soils For Life Board

Case study catch up: How is Milgadara performing in 2020?

Case study catch up: How is Milgadara performing in 2020?

Bill and Rhonda Daly were one of the first Soils For Life case studies in 2013. They are fourth generation farmers growing sheep, cattle and crops on their property Milgadara in Young, NSW, as well as running YLAD Living Soils – a composting business that allows them to enrich not just the soils on their property but many others across the whole country.

Watch the video to see the farm and hear Bill and Rhonda talk about their practices.

‘Courage, passion and never giving up’

When Soils For Life first profiled them in 2013, Bill and Rhonda told their story of change, outlining how they had started questioning conventional practices in the mid-1990s. Their search for alternatives led them to investigate biological, regenerative and biodynamic practices. After Rhonda was diagnosed with chronic meningitis and heavy mental poisoning in 2001 they knew they had to act. Twenty years on, they are reaping the benefits of shifting their mindset and adopting a regenerative, more mindful approach to their work.

“The resilience of our country has probably been the incredible thing that we’ve noticed since we’ve changed so many of our practices. It just bounces back so quickly after a big dry,” says Bill when Soils For Life caught up with the pair recently. They had managed to sow multi-species crops just before the rain in February and watched them grow to a meter high after the rain. “That’s what was really noticeable in this drought, it was really a lead-in drought of three years. And within four weeks after that rain, we had green. It’s just incredible.”

Resilient soils, resilient people

As the whole Daly family (Bill and Rhonda’s daughter, her partner and children all live on the farm) have sought to enrich the soils under their feet, they have also been enriched personally by the changes they have made on their farm. 

“I think resilience in soils and people is probably one of our greatest attributes – our past practices were able to give us the hope and the assurance that things were going to recover and come back again,” says Rhonda. And Bill agrees: “I know with the changes that we have made on the farm and in our own lives, that simplification of our system and the understanding of the way the countryside works, allows your mindset to be more relaxed in lots of respects. You’re not putting out fires all the time.”

Reaping the rewards

Recent ABARES data confirms that Bill and Rhonda’s biological, regenerative and biodynamic approach is a profitable one. Farming operations at Milgadara have been compared with other properties in the same region using ABARES data. This benchmarking process allows the business implications of management decisions to be compared using industry standard metrics. 

At $278/ha Milgadara produces 61% more profit per hectare than the region average of $173.  This is due to significantly higher income of $795/ha compared to $485/ha (Figure 1).

Milgadara income, expenses and profit compared to the region averages.
Figure 1 Milgadara income, expenses and profit compared to the region averages.

Wool production is a big contributor to profitability. Shearing occurs when the wool gets to 70mm, which is usually after around seven or eight months. Bill says that this actually makes the sheep operation a lot easier as they no longer have fly impacts, only drench on average once a year and often do not have to crutch sheep. Milgadara cut more than double the average amount of high quality wool per sheep with a corresponding increase in wool income (figure 2). Maintaining ground cover and feed budgeting is a big focus at Milgadara; “I made a very conscious decision to spell certain countries [rest certain areas] right from basically the beginning of the spring time last year. We didn’t have any stock on that right up until basically even into late April this year.” These paddocks were then used for this seasons lambing, giving other pastures a chance to recover.

A prime lamb operation remains part of the livestock system to maintain a strong cash flow. “It just makes that huge difference to how your yearly income is balanced rather than having to wait for one cheque a year,” says Bill. Cattle production is a trading operation with stock brought in when market and farm conditions are favourable. “I’d rather have the feed grow and allow it to make a healthy soil rather than lose money on cattle.”

Milgadara wool production and income compared to the region averages.
Figure 2 Milgadara wool production and income compared to the region averages.

With the Covid19 restrictions easing in NSW, Soils For Life will visit Milgadara in July to gain an understanding of how Bill and Rhonda’s practices are impacting the ecology and soil of the property. For more information on the Daly’s story of change, see our first case study here.

Birds: Why and how to measure them on your property

Birds: Why and how to measure them on your property

By Richard Thackway and Greg Hosking

Results of repeated bird surveys, like repeated soil tests, can provide land managers with valuable information on how their land management is performing over time. In fact, the number and different types of birds​ found in different types of vegetation on a property can be used​ as a​ measure of​ management performance.   

Why measure birds in your landscape

Birds are a practical indicator to monitor biodiversity. Any changes that you make to vegetation on your property will influence the type and number of birds by changing the availability of food, habitat or shelter. ​For instance, you might choose to remove​ exotic weed species and replace these with​ locally indigenous native plant species. ​Or you could decide to fence and revegetate an area of your property. Both management practices are likely to see some kind of change in food, habitat and shelter for birds. 

Before​ you change the management of an area, it’s a good idea to establish a repeatable way to measure bird life. By establishing a robust survey, then repeating it in the same season each year over following years, you will measure the impact on biodiversity that the changes your management practices have on the landscape.

Birds and vegetation

You can expect​ that​ establishing native plant shelterbelts or fencing out remnant patches of native vegetation will provide more​ habitat for local bird species to occupy.​ As a patch of vegetation matures (i.e. becomes more vertically complex and provides more resources like food, shelter and nest sites) it’s usual for a greater number and variety of​​ birds to be present. However, one factor that strongly influences the variety and number of birds found in such sites is how well the native vegetation on the property is connected with larger patches of mature native vegetation in the surrounding landscape. 

Garry Kadwell’s property ‘Fairhalt’, a Soils For Life case study, illustrates how this works in practice. His well-considered approach to the size, connectivity and proximity of his revegetation projects increased the numbers and types of birds visiting and staying to breed.

Revegetating a site with native plant​ species and​ encouraging​ the regeneration of native​ tree, shrub and ground cover plants will influence the types of birds and the number of birds over time and in different seasons. However, established non-natives also provide valuable habitat for birds so it’s important to consider their value to bird life and the other roles they play in the landscape (ie shade, amenity, stabilising waterways) before removing them.

Measuring bird life over time

Consistently recording the bird communities found on your property can provide you with valuable information about how the quality and extent of bird habitat has changed over time. We encourage land managers to use the same bird survey technique each time that they survey birds. 

To limit the variables, make sure you repeat your survey in the same season every year. An ideal time to survey birds is the first week of ‘spring’ (whatever time that may be in your agro-climatic region). For example, in Canberra it’s best to survey in the first week of October. Whatever time of the year you choose make sure you perform the survey at that same time in following years. Of course, you may wish to survey multiple times each year, depending on the seasonal variation of your climate. In rangelands settings, it is best to do this survey up to three weeks after rain.

Doing your first survey BEFORE you make changes (e.g. removing​ the weeds​ or fencing a remnant patch of native vegetation) will give you a fuller understanding of the impact of the changes on the landscape. 

The Soils For Life Bird Survey

To assist you to conduct robust and repeatable bird surveys, we have produced an easy to use bird survey template. Filling it out over seasons will provide more detailed and useful information about the bird life on your property than a simple species list. You may need multiple copies if you have a lot of bird life on your property.

Other survey techniques

Birdlife Australia has information on other types of bird survey techniques available for use on farms. They have also developed an app for mobile devices which can be used to record bird surveys. The Birddata app is free to download/use for both Android and Apple users. A range of different survey methods are available to use within the app. It also gives you the opportunity to trial different survey methods to determine the method that best suits your purposes, once you’ve found what works sticking to that method is the recommended approach. 

Talaheni ridge line showing two types of vegetation cover.

Things to consider when conducting a survey

  • Survey at the same time of year every year. The first week of spring each year is a good time.
  • Use the same survey technique each time you survey. 
  • Set a duration of time that you will spend on the survey (ie one hour) and use that duration consistently each time you complete a survey.
  • Different types of vegetation-cover and land use deserve a separate survey. For example, do separate surveys for ridges, slopes, river flats, dams etc. 
  • Use binoculars. They don’t need to be expensive, but 8 or 10 x 42 are best for birdwatching.
  • Pleasant weather – without wind and rain – is best for bird watching.

How to identify bird species

Many of you will have a field guide on your bookshelf or kitchen bench. You can use this to help you identify the species of bird. If you don’t already have one, the commonly used bird identification manuals across Australia are:

For more information on identifying bird species try the following places:

Want to know how to improve bird life on your property? Jillamatong, Fairhalt and Talaheni are Soils For Life case studies that have all reported positive change in bird life over time.

Our submission to the EPBC Act Review

Our submission to the EPBC Act Review

The Environment Protection Biodiversity Conservation Act is currently undergoing independent review and recently sought input on a discussion paper. Soils For Life prepared a submission that reflects a consolidated perspective from our engagement with our case study participants and the broader agricultural community interested in regenerating agricultural landscapes and the expertise of the SFL scientists. A draft report of the review is expected this month and the final report is due to be handed on down in October.

A summary of our recommendations

The SFL provides the following recommendations for improvements to the Act. Further detail is provided in the body of our submission.

  1. A key priority for reform should be that the Act support regenerative agricultural practices where appropriate. We propose that these practices are continuing uses as defined under the Act.
  2. Regenerative farmers are part of the wider agricultural sector. Duplication between States and Commonwealth can be reduced by a strong active leadership role from the Commonwealth and a coordinated approach from all levels of government to the rights and obligations of farmers. The Act should define national standards and objectives instead of focusing on compliance with process. The Commonwealth should establish detailed long term biodiversity goals, standards, indicators and reporting to inform policy and decision making under the Act.
  3. SFL notes the Craik Review from 2018 and believes that the issues covered and solutions proposed should be considered within the context of the EPBC Act review and in the main are supported.
  4. The approvals scheme needs to be improved upon; it should be outcomes driven and risk based, instead of process driven. Where producers undergo innovative land use change the Act should make provision for suitably qualified environmental professionals, to be appropriately recognised with qualifications and/ or certification, such as through the Certified Environmental Practitioner Scheme (CEnvP), to evaluate novel land use change to determine if it is consistent with the objectives of, and therefore allowable, under the Act.
  5. Cumulative impacts of projects at a landscape-scale should be considered within the Act, along with the need for setting regional outcomes and objectives through bilateral agreements with each state, allowing planning schemes and combined impacts to be referred to the Commonwealth for determination of potential to affect MNES.
  6. There is a need to demonstrate the efficiency and effectiveness of offsets through improved transparency. This must ensure that offset arrangements are demonstrably supporting the aims of the Act and are applied more consistently across landscapes.

Salisbury: Rehabilitating the Scalds


The MacAlpine family

In the 1980s, portions of Salisbury were fit for one thing and one thing only: landing an aeroplane. Since then, the MacAlpine family has rehabilitated much of this scalded land and developed a number of strategies to make their property ready for both the droughts and flooding rains that this part of the country is prone to.

The Property

The Salisbury property is located on the floodplain and associated relict red duplex terraces of the Marra Creek, to the west of the Macquarie Marshes about 160 km north-west of Warren in north-central New South Wales. The Queensland border is about 160 km further north. Carinda – the nearest town – is about 60 km north-east. Marra Creek runs through the region. It adjoins Salisbury on the property’s western side and potentially flows north into the Barwon River, a tributary of the Darling River.

Salisbury is about 20,000 hectares. The MacAlpines consider that area can support a self-replacing merino flock totalling about 10,000 dry sheep equivalents, typically comprising 5000 breeding ewes (1.5 DSE each) and 2500 ewe lambs, on average in the long term (and allowing for the kangaroos!). The property is subdivided into 22 main paddocks and a few holding yards and transport routes.

Salisbury was previously part of the Womboin Station, which was owned by the Dalgety company. Womboin was subdivided in 1972. The MacAlpine family purchased the Salisbury part in 1977 and added two adjoining blocks soon after. Half of Salisbury is on dark heavy clay soil that is relatively impervious to erosion. This rest is red soil that has a better natural potential for grazing has been degraded by wind and water erosion.

FARM FACTS

Salisbury, The Marra, NSW

ENTERPRISE: Self-replacing merino flock

PROPERTY SIZE: 20,000 hectares

AVERAGE ANNUAL RAINFALL: Approximately 450 mm

ELEVATION: 133 m

MOTIVATION FOR CHANGE

  • Improve the health and condition of the sheep, primarily through improving the health and condition of the pastures

INNOVATIONS

  • Reclaiming scalded red duplex country through “waterponding”
  • Manage total grazing pressure with wildlife-proof fencing
  • Manage sheep numbers via trigger point assessments at key points in the annual cycle
  • Manage water infrastructure
  • Supplementary feeding to assist breeding

KEY RESULTS

  • Approximately a quarter of the property (most of the scalded red country) has been treated with waterponds.
  • Several paddocks have been enclosed with wildlife proof fencing.
  • Sheep numbers are being managed via decisions on numbers to join and disposal to sale or to brother’s property at Grenfell, NSW.
  • Three of the four artesian bores on the property have been capped and piped to tanks – each with two troughs.
  • Supplementary feeding infrastructure established.

Ready for drought, ready for rain

Salisbury is typical of Dorothea McKellar’s ‘land of droughts and flooding rains’. There are no permanent watercourses on Salisbury. Water supply is rain and bores that tap the Great Artesian Basin. Average annual rainfall is about 450 mm on the property or 405 mm as measured at the nearest meteorological station, perhaps indicating high local variability. The average and median monthly rainfall sometimes falls in a single day, sometimes causing regional flooding. Conversely, very little rain falls for substantial periods.

Will MacAlpine is clear that for the grazing business to cope, obtaining maximum benefit from rainfall events and minimum damage during dry periods, ‘we must be ready for drought, and we must be ready for rain’. The strategy to achieve that comprises a number of tactics:

  • Increase the area of productive grazing land by rehabilitating scalded land.
  • Cap the artesian bores to control water supply.
  • Control kangaroo grazing pressure.
  • Manage sheep grazing pressure in dry periods by moving sheep to holding pens and hand feeding them, and by deferring joining young ewes.

In practice, these tactics are interlinked or interdependent.

TOP

Rehabilitating the scalds

A scald on Salisbury, still remaining in 2020, showing the hard-packed surface soil and elevated root systems of dead plants, indicating the depth of topsoil lost to wind and water erosion.

Although rehabilitation work was begun on Salisbury in the 1970s by the previous owners, when the MacAlpines took over the property Grant MacAlpine could land his light plane almost anywhere on the property. After seeing promising results on properties nearby, the MacAlpine family continued rehabilitation in the 1980s and 1990s. Works ramped up in 2009 and 2012 when government grants were available.

The methods that have been used successfully for several years on Salisbury involve using a grader to build low ponding banks to hold rainwater to a depth of 10 cm or so. These are circular on flat ground and semi-circular (a ‘horseshoe’ shape) on scald with a mild slope. The opening of the horseshoe is to the up-slope side, so that run-off collects within the banks. Each pond covers about 0.4 hectares. The grader used to construct the banks is also used to disturb the soil surface within the ponds in strategic locations (Thompson 2008). Saltbush seed – some of it collected on the property – is sown over the disturbed surface. Running cattle over the ponded area after the surface had been softened by rain was used to disturb the soil surface in a previous Soils for Life case study of a property near Brewarrina.

The effect of the ponding banks and disturbance is to hold water from the intermittent heavy falls. This then infiltrates – albeit slowly – to leach salts from the surface and provide moisture down the soil profile. The banks and disturbance within them provide a barrier to wind-blown sediments and plant material, which collects and starts to form an organic-rich surface layer. The saltbush seed, together with whatever seed is delivered by wind, sheep and birds, then has somewhere to germinate and moisture to tap in the soil profile. The natural processes of ecological succession have effectively been given a ‘kick-start’ and can take their course. To date, about half of the scalded areas on Salisbury have been treated in this way.

The results can be seen here:

Capping the bores

Four artesian bores that were installed early in the 20th century and have been flowing ever since supplement Salisbury’s intermittent water supply from rainfall. The aggregate potential flow rate is 9 L/second (284 ML/year, or about 114 Olympic swimming pools). However, the volume required to support grazing stock is estimated at around 1 L/second, so the rest (around 250 ML/year) runs away to waste via bore drains. The wasted water supports a kangaroo population far in excess of what would be there naturally, whereas a tank and trough system can be managed to restrict water supply.

Bore drain
One of the four bore drains that together used to carry away around 250 Ml/year of surplus water.

Capping the bores maintained the pressure of the underground artesian aquifer and used only the amount of water needed for stock. A threat by governments to charge for water used in excess of stock requirements focused the MacAlpines’ action. A subsidy from the NSW Government [1] helped too. Following the mandated specifications, each tank supplies two nearby troughs – the second being presumably for backup in case one failed. So far, two of the four bores on Salisbury have been capped.

tanks and troughs
Tank and troughs that have replaced free-flowing artesian bores.

TOP

Managing grazing pressure

This is the biggest concern for the viability of the Salisbury business is a seemingly endless supply of kangaroos willing to move on to the property. Generally, they come from the north and arguably in far higher numbers than would have been possible before graziers started providing water sources.

Managing the kangaroo population requires a massive investment in specifically designed fencing. Fences like that will also exclude wild dogs that be-devil sheep graziers elsewhere and that the MacAlpines expect in the Marra region before long.

The cost of kangaroo-proof fencing is around $4,000/km for materials and the property boundary is about 50 km, so a substantial investment is required. Fortunately, the NSW Government has provided a low-interest loan for this.

Kangaroo proof fence
Kangaroo-proof fence: extra height wire supported by fewer posts; mesh apron to prevent kangaroos pushing under the bottom wire; two electrified mid height wires powered by solar panels.

Sheep grazing pressure is managed in dry periods by moving sheep to holding pens and hand feeding them with grain and straw. This is especially useful for ensuring that ewes chosen for breeding have optimum nutrition.

Further tactics to reduce grazing pressure include:

  • deferring joining young ewes so that their grazing requirements are minimised; and
  • selling older ewes or passing them on to the farm run by Alex MacAlpine at Grenfell, NSW.

Will and Grant MacAlpine make these decisions from time to time [2], taking particular note of animal and pasture health.

TOP

Adapted to a variable climate

In summary, the grazing enterprise at Salisbury is well adapted to the highly variable, semi-arid climate. Amongst their many benefits, the water ponds bring more areas into production and generally improve the appearance of the property. Capping the bore, erecting wildlife-proof fencing and managing stock numbers controls the total grazing pressure and ensures sustainability so that the MacAlpines are ready for drought and ready for rain.


[1] Not as generous as the subsidy in Queensland.

[2] Especially over the summer period when a “feed gap” would develop if rain was inadequate.

References

Cunningham, G.M. 1987. Reclamation of scalded land in western New South Wales. Journal of Soil Conservation New South Wales, Vol. 3, number 2. Soil Conservation Service of NSW, Sydney.

Rhodes, D. 1987. Waterponding banks – design, layout and construction. Journal of Soil Conservation New South Wales, Vol. 3, number 2. Soil Conservation Service of NSW, Sydney.

Herczeg, A.L. and Love, A.J. 2007. Review of Recharge Mechanisms for the Great Artesian Basin. CSIRO Land and Water, Glen Osmond, South Australia.

Thompson, R. 2008. Waterponding: Reclamation technique for scalded duplex soils in western New South Wales rangelands. Ecological Management and Restoration 9: 170-181. doi: 10.1111/j.1442-8903.2008.00415.x


Ecological assessment


Economic report


Social report


Are you our next case study? If you have a story of change to tell about your regenerative landscape practices we’d love to hear from you! Find out more here.

The 10 things our ecologists look at when conducting field visits on farms

The Soils For Life team provides professional assessment of properties that are using regenerative landscape management practices. Our case study program considers the quadruple bottom line of each property by looking at the effects of regenerative agriculture practices on a farm’s production, economics and ecology as well as the social implications of these practices.

As well as conducting extensive desktop research, our ecologists conduct field trips to assess first hand the impacts of regenerative agriculture on the ecology of the farm. They chose ten criteria to represent the regenerative and productive capacity of each major land type on a farm.

Here are the ten things that they are looking at when they visit a farm:

Image from our case study Jillamatong

1 – Resilience to major natural disturbances

Resilience to major disturbances includes the following factors depending on the agro-climatic region (wildfire, drought, cyclone, dust storm, flood, frost). A major natural disaster or natural disturbance event can occur at any time. Some disturbances give a warning, such as a windstorm or electrical storm preceding a wildfire or a flood. Once a disaster happens, the time to prepare is gone. Lack of preparation can have enormous consequences on farm life including social, ecological, economics and production.

2 – Soil nutrients including soil carbon

Soil organic matter (SOM) plays a vital role in influencing available soil nutrients. Generally for every tonne of carbon in SOM 15 kg of phosphorus, 15 kg of sulphur and about 100 kilograms (kg) of nitrogen become available to plants as the organic matter is broken down. It is vital to know how much carbon we have in soil so that we can roughly estimate the potential supply of nutrients. SOM releases nutrients for plant growth, promotes the structure, biological and physical health of soil, and is a buffer against harmful substances.

3 – Soil surface water infiltration

Soil texture and structure greatly influence water infiltration, permeability and water-holding capacity. Of the water entering a soil profile, some will be stored within the root zone for plant use, some will evaporate, and some will drain away. In agro-ecological settings, by increasing water infiltration, permeability and water-holding capacity this will usually act as a stimulus to improve ecological function. Management regimes that promote the capture and utilisation of rainfall where it falls generally enhances ecological function.

4 – Biological activity in the soil

Soil biology affects plant and animal production by modifying the soil physical, chemical and biological environment within which plants grow and persist. The ratio of fungi to bacteria is important for land managers to understand – too many bacteria can indicate an unhealthy and unproductive soil.

In healthy soils, there is a good balance between fungi and bacteria; invertebrates including arthropods and worms are usually present. Collectively these form a vital part of a plant nutrient supply web.

A wetland from our Fairhalt case study

5 – The physical properties of the soil

Soil is a medium for plant growth, given the right environmental conditions. In some agroclimatic regions, the naturally occurring surface layers (A horizon) have historically been adversely impacted by inappropriate land management regimes. Major and moderate loss of the A horizon either through water or wind erosion may have diminished the ecological function of the soil as a medium for optimal plant growth.

6 – Changes and trends in the reproductive potential of plants

Grazing production systems rely on an ecosystem’s inherent capacity to bounce back after grazing and natural climate events (e.g. wildfire and drought). Where regenerative land management regimes have been implemented to build or rebuild the reproductive potential of plants and pastures, we look at the observed outcomes on plant/pasture reproduction, germination, establishment, development and maintenance.

7 – The extent of tree cover

Tree cover in agricultural landscapes provides important ecosystem benefits, including mitigation of soil erosion; shelter for pastures and crops; improved animal welfare; enabling added revenue from stacked (multiple) enterprises; habitat and breeding sites for pollinators and predatory insects birds and animals; improved salinity management; improved interception of rainfall; and improved aquifer recharge.

8 – Status of ground cover

Ground cover in agricultural landscapes provides important ecosystem benefits. The quality of ground cover provides essential protection to keep the soil cool against direct, searing summer heat by reducing evaporation and protecting bare soil against raindrop splash and wind erosion. A dense, matted ground layer of pasture grasses slows overland flows during the intense rainfall events and assists with infiltration of rainfall, thus mitigating soil erosion and replenishing soil moisture. Ground cover also provides essential habitat and breeding sites for pollinators and insects and birds and other biodiversity. Land management regimes that promote higher levels of ground cover and biomass in critical growing seasons generally enhances ecological function.

9 – The diversity of tree and shrub species

Intensively managed agricultural landscapes typically adopt management regimes that simplify the diversity and number of species of trees and shrubs for pasture and crop production. Where regenerative land management regimes have been implemented there has been an observed increase in the number of tree and shrub species.

10 – The diversity of grass species

In many grazing production systems, the implementation of regenerative land management regimes can improve the variety of pasture plants (annuals and perennials). In turn this can improve pasture production, animal nutrition, protect natural resources (soil and water) and build the capacity of farming systems to adapt to future production and environmental challenges. The intensity of the grazing management system will determine the health and vitality of pastures and their longevity.

The management and selection of the perennial pasture species for a grazing production system should be based on considerations of climate, soil conditions and performance of pasture species under different management regimes.

Read about how land managers have improved each of these ecological criteria on their farms in latest case study reports. You can search them by state or sector here.

Are you farming using regenerative agriculture practices? Why not consider applying to be a case study.

GARRY KADWELL’S ‘FAIRHALT’


Meet Garry Kadwell

Garry Kadwell has been managing Rosedale and neighbouring property Fairhalt since the 1970s. His family acquired the first parcels of the properties in 1901. The properties are located on the Great Dividing Range south of Crookwell, New South Wales. Up until 1980 the main enterprise of the Kadwell family was an apple orchard. Under Garry’s management the enterprise of the property has changed to producing seed stock potatoes and fat lambs.

Over the years Garry has worked tirelessly protecting remnant stands of vegetation as well as planting habitat corridors to connect stands of vegetation across the properties. Currently 32% of Fairhalt is protected for conservation. Garry has also created numerous wetlands across the property providing vital habitat for birds and other fauna, such as the platypus (Ornithorhynchus anatinus).

FARM FACTS

Fairhalt, Crookwell, NSW

ENTERPRISE: Seed stock potatoes and fat lambs

PROPERTY SIZE: 730 acres

AVERAGE ANNUAL RAINFALL: 813 mm

ELEVATION: 1000 m

MOTIVATION FOR CHANGE

  • An awareness about the environmental health of the property and its values was instilled in Garry during his youth by his father and grandfather, this helped shape the management strategies and regimes that Garry has implemented.

INNOVATIONS

Regenerative landscape and livestock management regimes, including:

  • Increased time between potato crop rotations to allow soil health to repair.
  • Lucerne and grass species cropping post-potato crop to improve soil health. Compost and lime applications to provide soil nutrients and fix pH levels.
  • Utilisation of a “one pass” tilling machine to reduce tilling impact on soil.
  • Habitat corridors planted across the property to link stands of remnant vegetation.
  • Set aside 32% of the property for conservation purposes.
  • Constructed wetlands on the property to provide habitat for birds and other fauna.
  • Rotationally grazing fat lambs to maintain ground cover.

KEY RESULTS

  • Significant increases in production, now one of the largest potato producers in the region. High levels of organic matter and carbon are stored within the soil profile. Conservation works have provided critical habitat for endangered species of flora and fauna.


Narrative

Garry Kadwell’s family have managed Fairhalt for over 100 years. Garry’s early ancestors conserved remnant stands of vegetation from land clearing across the property. Some of Garry’s earliest memories are of planting trees with his grandfather and being instructed of their value in the landscape. Garry has continued on planting trees and other vegetation throughout Fairhalt. Currently 32% of Fairhalt is protected for conservation purposes.

Garry has significantly increased production levels on the property in the form of seed stock potatoes and fat lambs. The increases in production levels have coincided with improvements to soil health and ecosystem health of the entire property. Garry has achieved this through careful management and understanding of the many layers of the system that comprise Fairhalt.


Ecological

The conservation work Garry Kadwell conducted has provided significant natural capital benefits to Fairhalt. Threatened and vulnerable species of flora and fauna are thriving within the bounds of Fairhalt.


Economic

Throughout our analysis, we noted that the regenerative practices Garry has implemented on Fairhalt have led to significantly increased production levels when compared to the Average Farm. With increased productivity, the income generated on Fairhalt is also significantly higher than that of the average Farm. In addition, the increased productivity has allowed Garry to deploy a more diversified production mix – leading to a more sustainable enterprise as a whole.


Social

Garry’s first recollection is of planting trees with his grandfather. In the early 1970s, they planted Yellow Box together, and the elder Kadwell said, ‘Garry, when you look at these trees you will remember me, and we will have made a difference.’

See the difference this attitude has made in our photo essay of Fairhalt.


Are you our next case study? If you have a story of change to tell about your regenerative landscape practices we’d love to hear from you! Find out more here.